收藏 分销(赏)

桩基施工三维可视化管理系统本科毕业论文.doc

上传人:胜**** 文档编号:3010685 上传时间:2024-06-13 格式:DOC 页数:31 大小:1.02MB
下载 相关 举报
桩基施工三维可视化管理系统本科毕业论文.doc_第1页
第1页 / 共31页
桩基施工三维可视化管理系统本科毕业论文.doc_第2页
第2页 / 共31页
桩基施工三维可视化管理系统本科毕业论文.doc_第3页
第3页 / 共31页
桩基施工三维可视化管理系统本科毕业论文.doc_第4页
第4页 / 共31页
桩基施工三维可视化管理系统本科毕业论文.doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、毕业设计(论文)桩基施工三维可视化管理系统 学生姓名:周万俏指导教师:专业名称: 哈尔滨工程大学成人教育学院2011年7月桩基施工三维可视化管理系统摘要:随着地理信息系统的深入研究和广泛应用,初步建立了可视化的桩基工程管理系统。针对桩基施工过程, 结合工程地质勘察,建立地层三维地质模型,在桩基施工过程中,对每根桩所穿过的地层和进入持力层厚度进行可视化的信息查询、管理,以保证桩基施工质量。系统利用Microsoft Accese作为开发工具,初步建立了数据库、数据表和数据源,通过ODBC和ADOBC控件引用数据源,利用VC+6.0控件引用数据源,绑定数据库表中的相应数据记录, 初步建立了可视化的

2、桩基工程数据管理系统, 能够进行数据的增加、删除、修改以及记录查询与数值计算, 该系统界面友好、不同界面可以简便切换并包含不同用户所需数据。文中给出了实现所有这些功能的具体过程和主要方法, 同时, 本文制作了程序发布版与对应帮助文件, 可以方便在其他计算机安装和使用。关键词: 桩基工程,三维地层,地质模型,三维可视化,数据库,VC+程序设计Pile Foundation Construction visualization management systemAbstract:With the GIS-depth study and widespread application, the ini

3、tial establishment of the foundations of visual management system. For the foundation construction process, combined with engineering geological investigation, the establishment of three-dimensional geological model of formation, in the foundation construction process, worn by each pile into the bea

4、ring strata and the thickness of the visual information search, management, to ensure the quality of foundation construction. Based on three-dimensional visualization technique to study the geological model to establish the method to achieve a pile of three-dimensional visualization and management,

5、and construction with engineering database management system for three-dimensional visualization for construction management decisions. System uses Microsoft Accese as a development tool, the initial establishment of the database, data table and data source, ODBC and ADOBC by reference to the data s

6、ource controls, using VC + +6.0 reference data source control, bind the corresponding database table data records, the initial establishment the foundations of visual data management system for data to add, delete, modify, and query and numerical records, the system user-friendly, easy to switch to

7、different interfaces and contains the required data of different users. The paper gives a concrete realization of all these functions and the main method of the process, while making the program this release and the corresponding help files, you can easily install and use on other computers.Keywords

8、:Foundations;three-dimensional formations; geological model; visualization;database, VC + + programming.目 录1 引言随着科技的发展,新的数字三维工程勘察报告以三维可视化形式提供应用于桩基工程,它直观的工程勘察成果,用户可根据需要对其进行全方位、动态的分析和利用。因而能正确的掌握和认识地质体在空间上的分布特征和变化规律,选择合理的基桩施工参数。桩基工程地质三维可视化系统的目标是建立以三维坐标信息为基础,能反映地质信息的三维地质模型,用以描述地质体的信息,并提供有效的、方便和直观的查询和显示手

9、段,大大地提高计算分析结果的可靠性,强化工程决策的科学性。建立工程地质信息三维可视化系统,在三维空间重构地质体的真实结构,为基桩参数设计和施工管理提供有效的依据,在施工过程中,对不协调的部分,及时修正和优化,在确保桩基质量的前提下,可得到明显的经济效益,本文阐述了桩基工程可视化管理的原理及其工程应用。数据库技术是研究组织、存储、获取和处理数据的一门技术, 是信息技术的核心和基础, 它将大量数据按一定的模型组织起来, 提供存储、维护、检索数据的功能, 使信息系统能方便、及时、准确地从数据库中获得所需的信息,数据库及其相关技术的应用越来越广泛,桩基础是目前多+高2层建筑常用的基础型式,本文以文献川

10、作理论基础、结合实际工程情况川,利用Visual C+将数据库技术应用于桩基工程,通过数据库保存桩型、截面尺寸、桩长、桩距、桩身材料、沉桩工艺、土层资料和分布等参数, 初步建立了桩基工程数据库, 下面简述其建立过程。2 桩基工程的信息化和可视化桩基工程处理的对象是经历了漫长的地质历史年代而生成的地质体, 人们在长期的工程实践中积累了大量的数据资料, 对这些数据和信息的数字化、定量化以及智能化的要求日益提高。桩基工程的全过程, 可以说是一项不断获取数据、分析数据和处理数据的过程。相对于其他工程而言, 桩基工程具有工程的隐蔽性、地质条件的复杂多变性和岩土体性质把握的不准确性, 始终需要在工程的勘察

11、、设计和施工过程中获取各种各样的信息和数据, 更需要对这些数量大、种类多的信息和数据进行快速处理, 及时反馈, 优化设计, 指导施工。数字地球技术体系的发展和新兴学科的交织渗透为桩基工程信息化奠定了坚实的基础, 同时桩基工程的信息化也成为数字地球技术体系的重要组成部分。可视化是近年来发展起来的一种计算机实用技术。它融合了图形学、图像处理、数据管理、计算机网络和其它的相关领域技术, 目的在于解决海量数据的处理和信息的综合表示问题, 提高信息利用的效率。岩土工程是一个复杂的大系统, 科学计算可视化的应用将有助于对岩土工程的研究。由于其对大规模数据处理和体现的高效性、直观性, 科学计算可视化在多种领

12、域得到了广泛的应用。岩土工程的信息化和可视化需要大量的高新技术和广泛的专业知识, 涉及多个学科和技术领域。这些技术包括:( 1) 三维数据结构及建模技术。岩土工程处理的对象性质复杂, 需要研究适用的三维数据结构和有效的建模技术, 既能充分反映地层的特点, 又便于数据的管理和操作, 这是实现系统高效显示和分析的基础。( 2) 三维可视化技术。三维可视化技术是当前计算机科学研究中的热点之一, 需要研究合理的空间算法, 实现在三维空间中真实地再现现实世界, 并为用户提供方便、快捷、直观的显示手段。( 3) 三维空间分析技术。有效的三维分析手段是三维地层信息系统进一步发展与深入应用的保证, 也是进行评

13、价决策的依据与基础。3 岩土工程信息化与可视化应用领域3. 1 在工程地质勘探中的应用(1) 建立工程地质数据库, 方便查询检索。(2) 真三维图、平面图管理与显示。(3)生成剖面图、断面图。(4)根据钻孔、物探资料生成柱状图。(5)管理岩土力学成果表和统计表以及地层统计表。(6) 进行承载力计算等分析。(7)生成文字报告。3. 2 在施工监测中的应用(1) 监测数据自动分析处理。(2) 建立施工检测数据库。(3)施工平面图显示。(4) 监测点位置图显示。(5) 监测点布置优化设计。(6) 绘制各种监测点位移变化图、应力分布图、荷载分布图。(7) 进行变形预测、支护选型计算等。(8)监测报告。

14、3. 3 在工程设计及方案优化中的应用(1) 建立工程地质数据库。(2)真三维图、平面图管理与显示。(3)生成剖面图、断面图。(4)生成DTM( 数字地面模型) 。(5) 进行线路设计( 含可行性分析) 。4 地层三维可视化三维地层可视化系统有效的利用了工程勘察报告的成果:钻孔柱状图和剖面图等,结合相关的地质专家知识,无需经过复杂的数据处理工作,充分利用了原始钻孔数据,且层次结构清晰、拓扑关系相对简单且实用,大大提高了三维地质建模的实用性。运用计算机图形学和图像处理技术,将工程勘测数据和地质岩土力学数值模拟分析的计算结果转换为图形图像在计算机屏幕上显示出来,从3D 空间的角度真实地再现现实世界

15、。为了有效的利用钻孔数据,本文从勘察报告的钻孔柱状图及剖面图等入手,对获得的勘测的离散钻孔数据进行预处理,即插值,转化为DEM 数据源,构成单岩(土) 层面DEM ,再由地质体空间拓扑关系,进行叠加,并缝合相邻层面的界面,构成三维地质实体。在此基础上,进行多角度,多手段观察和操作建立的模型,为工程地质条件的分析评价提供可视化的手段。同时建立相应的地质信息数据库,将三维地质模型与数据库信息链接起来,实现工程地质信息的可视化管理与查询。以Visual C+ + 为平台,结合OpenGL ,研究和开发了桩基工程地质信息三维可视化分析管理系统。研究的主要讨论内容为基于OpenGL 的双窗口的实现及地下

16、地质体的建模与可视化方法,并进行相关可视化分析和属性的查询,为有效地指导决策和设计提供依据。5 三维可视化技术基本原理三维可视化技术的思路是用直观的图形输出来代替枯燥的数据输出, 借助人类强大的视觉及形象思维能力, 对数据进行本质上的理解, 从而洞察、发现数据中隐藏的现象和规律, 为获取深层次信息提供了强有力的手段, 同时也极大地提高了工作效率。它涉及到计算机图形学、图像处理、计算机辅助设计、计算机视觉及人机交互技术等多个领域。目前,三维可视化技术与虚拟现实技术在公路建设与管理、石油勘探、地震研究等诸多领域得到应用。本文研究的三维可视化体现在以下几个方面:( 1) 用适当的图形表示方式显示数据

17、场中各类物理量的分布情况;( 2) 能对画面进行交互操作, 可更改观测位置、缩放等, 以使分析者可随时对感兴趣的部分进行仔细分析;( 3) 实现动态显示, 能连续地显示整体或部分的三维数据场在不同时刻的情况, 以方便分析;( 4) 在友好的可视化人机界面下, 实现驾驭式计算可视化。在可视化的数值模拟中, 用户可以根据显示的图像交互控制模型的各个阶段, 直到对所模拟的现象获得理解和洞察。6 桩基三维可视化6. 1 桩基施工桩基施工大都是按图进行的,其施工过程无法观察, 成桩后也不能进行开挖验收。施工中任何一个环节出现问题,都将直接影响到整个工程的质量和进度,甚至给投资者造成巨大的经济损失和不良的

18、社会影响。因此,要求基础施工队伍在施工技术措施上要落实,并加强施工质量管理,密切注意抓好施工过程中每一个环节的质量,力争将隐患消除在成桩之前或成桩的过程中。因此在施工前要认真熟悉设计图纸及有关施工、验收规范,核查地质和有桩基施工方面的资料,对桩基在施工过程中可能会发生的一些问题进行分析后制订出施工质量标准、验收实施方案和每根桩的施工记录,以便有效地对桩基施工质量加以控制。6. 2 桩基三维可视化桩基质量三维可视化的管理与分析分为三个主功能模块:数据库处理模块、空间分析模块和显示模块。为了实现桩基施工过程的三维可视化管理,虚拟施工设计将桩嵌入相应的地层,首先我们提出一个三棱柱单元图1 :这里所指

19、的三棱柱并不是数学意义上的严格的三棱柱,它由六个点组成(点可以重合) ,棱与棱之间可以不平行, 它包含两个三角形和三个四边形( p0 p1 p2 、p5 p4 p3 、四边形p0 p3 p4 p1 、四边形p1 p4 p5 p2 、四边形p0 p2 p5 p3 ) 在显示的时候分别画出并且法线向外构成一个单元。我们再以三棱柱为对象来显示地层和基桩。我们可以把基桩分解成有限个三棱柱来显示,对一根桩的信息我们可以知道其直径、桩心坐标和桩长。那么我们就可以通过一个循环把桩顶和桩底分解成有限个三角形,再将对应的三角形组成三棱柱并一一显示,就可以三维显示整根桩。当桩嵌入地层时,我们需要对其进行拓扑计算,

20、并重新划分网格再组成新的三棱柱。当一根桩嵌入地层时,其在平面上的投影关系如图2 所示:这样就打破了原先地层的三棱柱组成关系,就需要重新计算三棱柱的组成,为此我们要首先计算出pi和qi (i = 1 ,2 ,3 ,4) 的坐标(具体的算法如下) 。再如图虚线所示的重新划分网格并且将圆与其外切的正方形按1/ 4 圆弧为单位来划分网格,最终再组成新的三棱柱并一一显示就可以得到基桩嵌入地层后的三维显示,进而我们可以单独显示基桩或单独显示嵌入后的地层。7 可视化系统的建立本文使用Microso ft 的软件开发工具Microso ftVC+ + 6. 0 结合专业的3D 程序接口OpenGL 建立了桩基

21、三维可视化系统。步骤如下:7. 1数据库的建立本文采用Microsoft Access 2000 创建数据库及数据表。打开该应用程序主界面对话框创建一个数据库。选择“ 空A ccess 数据库” , 有了空数据库,可以用表、查询和其它部件来填充这个数据库。在数据库操作窗口中, 使用“ 数据表设计器” 来定义数据表的字段名称、数据类型、字段大小、小数位数以及索引等内容来创建新数据表。系统数据库包括钻孔信息数据表、指标信息数据表、桩基信息数据表、地层信息数据表。以钻孔信息数据表为例。本文采用直接通过ADO 操作Access 数据库。ADO 数据库访问技术使用的基本步骤及方法:( 1) 添加# im

22、port 指令打开stdafx. h 文件, 将下列内容添加到所有的include 指令之后:# include# impor t“ C: Pr ogram Files Common FilesSystem ADO msado 15. dll ” no _ namespace re-name( “ EOF” , “ adoEOF “)( 2) 初始化COM, 创建ADO 连接AfxOleInit( ) ;m_pConnect ion. Cr eateInstance( uuido f ( _Con-nect ion) );/ / 用t ry. . . catch( ) 来捕获错误信息,try/

23、 / 打开本地Access 库Demo. mdbm _ pConnection - Open ( “ Pr ovider = Mi-crosof t. Jet . OLEDB. 4. 0; Data Source = * .mdb“ , , , adModeU nknow n) ;catch( _com_err or e)AfxMessageBo x ( “ 数据库连接失败, 确认数据库* . mdb 是否在当前路径下!” ) ;return FALSE;( 3) 打开数据表定义_ Reco rdsetPtr 型变量, 然后通过它调用Recor dset 对象的Open 方法, 即可打开一个数

24、据集。_Reco rdsetPtr m_pRecordset;m _ pRecor dset .CreateInstance ( _ uuido f( Reco rdset ) ) ;tr ym_pReco rdset- Open( “SELECT * FROMTable”,/ / 查询T able 表中所有字段theApp. m_pConnect ion. Get InterfacePt r( ) , / /获取库接库的IDispatch 指针adOpenDy namic,adLockOpt imist ic,adCmdTex t) ;catch( _com_error * e)AfxMes

25、sag eBox ( e- ErrorMessag e( ) ) ( 4) 读取表内数据_v ar iant_t var;CSt ring str h1, st rh2, st rh3, st rh4, st rh5, str h6 ;CMy3DViewDataApp* theApp= ( ( CMy3DViewDataApp* ) AfxGetA pp( ) ) ;t ryif( ! theA pp. m_pReco rdset- BOF)theApp. m_pReco rdset- MoveFirst( ) ;elseAfxMessag eBox ( “ 表内数据为空” ) ; r etu

26、rn;w hile( ! theApp. m_pRecor dset- adoEOF)var = theApp. m_pReco rdset - GetCo llect( “钻孔号” ) ;if( var. vt ! = VT _NU LL)str h1 = ( LPCST R) _bstr_t( var) .var = theApp. m_pReco rdset - GetCo llect( “钻孔时间” ) ;if( var. vt ! = VT _NU LL)str h6 = ( LPCST R) _bstr_t( var) ;m_Gr id. SetItemTex t( 0, 0, s

27、t rh1) ; m_Gr id. SetItemTex t( 0, 5, st rh6) ;theApp. m_pReco rdset- MoveNex t ( ) ;catch( _com_error * e)AfxMessag eBox ( e- ErrorMessag e( ) ) ;( 5) 记录的移动以及修改、添加、删去数据使用以下类似函数:m_pRecordset- Mov eFirst ( ) ;m_pReco rdset- MoveNex t ( ) ;m_pReco rdset- AddNew( ) ;m_pReco rdset- Update( ) ;m_pReco rd

28、set- Delete( ) ;( 6) 关闭库连接, 释放资源if ( m_pConnect io n- State)m_pConnect ion- Clo se( ) ;m_pConnect ion= NULL;7. 2三维地层模型的建立三维空间中有形的物质( 如岩石、土壤) 和无形的物理场( 如声场、磁场、应力场) 的分布, 构成充满三维地下空间的数据场- 数量场或矢量场。按照这些不同类型的数据场就可以对三维空间进行不同的划分。系统的三维地层模型是建立在以岩性为要素的单一体划分的基础之上的。采集到的数据样本主要是各岩层、土层的分界点, 这些采样点具有有限、离散、稀疏、不规则等特点, 借鉴

29、已有二维空间数学建模的理论和实践经验, 本文提出了多层DEM 建模的概念, 即按DEM 的方法与思路对每个岩层、土层根据这些分界点进行插值或拟合。数字高程模型DEM ( Digital Evaluat ion Mo d-el) 是区域地形的数字表示, 由规则水平间隔处地面点的抽样高程矩阵组成。函数的形式描述为:Vi = (X i , Yi , Zi ) ( i = 1, 2, 3, , n)式中: X i , Yi 是平面坐标, Zi 是( X i , Yi ) 对应的高程,当该序列中各平面向量的平面位置呈规则格网排列时, 其平面坐标可省略, 此时DEM 就简化为一维向量序列 Zi , i=

30、1, 2, 3, , n 。内插是指根据已知点的实测值来推求采样空白区的元素含量的空间插值运算, 实质上就是从已知样点的实测数据出发, 按照一定的数学准则, 选用特定的数学曲面来最大限度地拟合逼近并代替元素含量的实际地学曲面。根据拟合的数学曲面可以求得研究区域中任意一点的元素含量值。DEM 内插就是根据若干相邻参考点的高程求出待定点上的高程值。将采样到的各岩层、土层的分界点, 分别进行空间插值或拟合运算, 形成每一岩层、土层层面的DEM, 即得到不同地层面在三维空间的展布情况。这样, 在空间中形成了多层的DEM, 对应于规格网中的 x , y 坐标, 不再是只有一个Z 值与其对应, 而是可以存

31、在多个高程值。这些多层DEM 都有完全一致的参照系并能互相准确地匹配, 严格一一对应。这时, 假若在理想状态下, 各个地层面在空间中都不发生相交的情况, 就可以将各个相邻层面上的格网一一联接, 生成三棱柱体元,建立拓扑关系, 形成局域拓扑模型( LTM) , 这样就由多层DEM 构成了一个整体的三维地层模型。但在实际应用中, 地层界面之间不可避免地会出现交叉拼接等现象, 因而一般在形成多层DEM 之后, 首先, 需要对各地层面进行相关判断, 完成地层划分,然后在此基础上建立三维地层模型。7. 3系统的可视化管理为了能对画面进行交互操作, 即可视化管理, 以使分析者可随时对感兴趣的部分进行仔细分

32、析; 往往需要控制和修改所显示的图形, 因此需要进行一系列的图形变换, 而这些变换都是通过坐标点的几何变换实现的。常用的变换方法有三维平移变换、三维旋转变换、放大、缩小等。( 1) 三维平移变换在三维坐标系中, 一个点的平移变换是从点P( x , y , z ) 移动到点P ( x, y, z) , 其变换运算为:x= x + Txy = y + T yz= z + T z􀀁 􀀁 平移参数Tx , T y , T z 是定义平移距离的坐标。( 2) 三维旋转变换为了计算图形的旋转变换, 首先应确定旋转轴和绕该轴旋转的角度。三维旋转变换的旋转轴可以为空间任何方

33、向, 最方便的旋转轴是平行于三个坐标轴的那些轴。设逆时针旋转的方向为旋转角取正值, 则绕x轴的三维旋转变换公式为:􀀁 绕y 轴的三维旋转变换公式为: 绕z 轴的三维旋转变换公式为:绕任意轴的三维旋转变换可采用以下步骤:平移图形, 使旋转轴过原点; 旋转图形使旋转轴与坐标轴重合; 实施旋转变换; 采用反方向旋转变换, 使旋转返回其原始方位; 应用反向平移变换, 使旋转轴返回原始位置。7. 4放大或缩小变换三维图形的放大或缩小同样是通过变换图形上的每一个点来实现。设在三维坐标系中, 一个点经过放大或缩小变换后从点P ( x , y , z ) 移到点P ( x, y, z) ,

34、其变换运算为:xy z = ax ay az 式中: a 为正实数, 当a 0 时图形放大。8 建立数据源8. 1创建Access 数据库本文采用Microsoft Access 2000 创建数据库及数据表。打开该应用程序主界面对话框创建一个数据库(如数据库已建立, 可以直接打开)。选择“ 空Access数据库” , 将“ 新建数据库” 一“ 桩基工程”,保存在磁盘的适当位置。8. 2创建数据库表数据库只一个安放数据表、查询等的容器, 有了空数据库, 可以用表、查询和其它部件来填充这个数据库。在数据库操作窗口中, 创建新数据表(也可打开或删除除己存数据表)。(1)建立基本数据表创建一个数据表

35、即定义数据表的字段名称、字段类型、字段大小、小数位数以及索引字段等内容用“数据表设计器” 实现。对于数字字段, 需要特别注意格式的选择, 数据表中有些字段是整数(如“ 楼层数” 等), 大部分为小数。“ 工程编号” 、“ 楼层数” 、 地下室层数” 、“ 桩数” 的字段设为“ 长整型” , 其他数据类型为“ 数字” 的字段, 字段设为“ 单精度型” 。把“ 工程编号” 设为主键, 将表名“ 保存” 为“ 总表”并切换到数据表视图, 在数据表视图中设置如下字段:工程基本信息; 土层资料; 桩基参; 预算信息。已输人的字段组成了记录结构, 可输人一条或者多条记录。把一个实际工程作为一条记录输入,一

36、条记录输入完毕以后, 按“ 关闭” 按钮保存表、结束“ 总表” 制作。也可制作多张表, 在生成的系统中分别调用。(2)建立查询A.建立“ 房产公司查询”切换到查询, 引用表中已有字段, “ 在设计视图中创建查询” 中选择如下字段(可选择其它字段, 如有多少表, 查询中可引用不同表中字段):a.工程基本信息的“ 工程编号” 、“ 工程名称” 、 建设单位” 、“ 设计单位” 、“ 施工单位” 、“ 监理单位” 、“ 地处位置” 、“ 建筑面积” 、“ 楼层数地下室层数”、“ 建筑类型” ;b. 预算参数的“ 钢筋硷量” 、“ 单位造价” 、“ 桩基总价” 。将查询“ 保存” 为“ 房产公司查询”

37、 。B. 建立“ 施工单位查询”用相同的方法创建“ 施工单位查询” , 这一查询中包含下面的字段:a. 工程基本信息的“ 工程编号” 、“ 工程名称” 、“ 施工单位” 、“ 地处位置” 、“ 建筑面积” 、“ 楼层数地下室层数” 、“ 建筑类型” 、“ 结构类型” 等;b. 土层资料的“ 土层序号” 及各土层的“ 埋深” 、“ 含水量” 、“ 天然重度” 、“ 内聚力” 、“ 内摩擦角” 等;c. 桩基参数的“ 桩类型” 、“ 方桩” 、“ 圆桩” 、“ 方桩尺寸” 、“ 圆桩尺寸” 、“ 桩的施工工艺” 、“ 有效桩长” 、“ 桩型” 、“ 坚向承载力标准值” 、“ 桩距” 、“ 桩数”

38、、“ 允许沉降值” 、“ 实际沉降值” 、“ 底板型式” 、“ 承台厚度” 、“ 层台底板厚” 等0d.预算信息设置的“ 钢筋硅量, 、“ 桩基总价” 等。任一查询中自动继承了“ 总表” 中的记录内容、无需在查询中添加记录。关闭Access则创建了一个表和两个查询, 分别是“ 总表” 和“ 房产公司查询” 、“ 施工单位查询” 。这样, 初始数据库应用系统开发所不可缺少的内容,它为数据应用系统创建了数据环境, 提供了数据访问对象。8. 3创建ODBC数据源通过控制面板、管理工具下的“ 数据源” , 进人ODBC 数据源管理器, “ 添加” 新数据源, “ 选择”Microsoft Access

39、 Driver(*.mdb), 在“ 选择数据库” 中选择已创建的Access 数据库及其对应路径。将数据源名称“ 确定” 为“ 桩基工程数据源” , 这样,ODBC 数据源管理器数据源管理器的用户数据源中就增添了“ 桩基工程数据源” 。在ODBC 数据源管理器 数据源管理器按确定按钮并退出, 这样, 就初步创建了桩基工程数据源。9使用VC+制作应用程序系统9. 1 建立应用程序框架启动Visual C+, 用File/ New(文件/新建)选择Projects(工程), 在Location(路径) 中输人“ 桩基工程数据源” ,Project Name(工程名称) 中输人应用程序名“ 桩基工

40、程数据源” ,MFC App Wizard(EXE)选择Multiple Document(多文档)与Database View with File Support(带文件支持的数据库视图), 数据源是Database View with File Support(有文件支持的数据库视图), 或Database View with File Support无文件支持的数据库视图)均可。Data Source(数据源)的Database Options(数据库选项)中ODBC 选“ 桩基工程数据源” ,Select Database Tables(选择数据库表) 为“ 总表” ,选 As a s

41、tatically linked library(静态连接)。其它为默认选择。Finish(完成)后出现的 New Porject Information(新建工程信息)对话框, 指出了应用系统名称、文档类型、操作平台、头文件、工程特色等。9. 2 添加控件主窗体界面比较复杂, 它是静态文本、编辑框,组合框、是非框等控件组合起来使用。可在对话框对象 ResourcesDialogIDD_MY_FORM 上增加控件, 选取工具栏中和适当控件拖到对话框中, 单击鼠标右键可改变其 Properties(属性)中, 将 Caption (标题)改为“ 工程名称” 等。同样增加“Edit box”(编辑

42、框)等控件并设置有关属性。9. 3 编辑框与数据表字段的绑定前面创建了一个数据源, 它是被主对话框引用的的数据源。在对话框中, 把编框控件和相关的数据表字段进行绑定, 运行时才能对数据记录引用、修改和更新。将 Class Wizard 中 MFC Class Wizard 对话框切换 Member Variables, 把Class Name 选为CmySet ,则列出“ 总表” 中所有字段名称, 为每一字段赋予对应的成员名称。在 Column Name 中选“ 工程名称” , 在并 Add Variable(添加成员变量)中Member variable name(成员变量名) 值 m_GC

43、MC,在 Class Name 中选择CMy View保存之。在 CMy View 中根据编辑框的资源索引号建立与数据表字段之间的映射关系。在 Control IDs 有 IDC_EDITGCMC, 它是对话框中安放的编辑框控件, 在Add Member Variable 中 Member variable name 选 m_pSet_m_GMC。这样,数据表中“ 工程名称” 段就和编辑框控件绑定了。同样地, 可以绑定所有其它字段。9. 4实现数值运算功能在第一条记录中“ 桩基总造价” 本身没有数值,可以运用己有的数据绑定关系把“ 桩基总造价” 的数值计算出来。计算关系为: 桩基总造价二钢筋硅

44、量单位造价。可以增加一个标题为计算的按钮,为其增加成员功能名, 并添加相应的代码。9. 4实现记录编辑与查询现在只有一条记录, 如果有多条记录, 就需要在记录中进行移动, 而且需要具备编辑记录的功能, 如增加记录、删除记录等。在界面中增加几个“ Button”(按钮), 控件标题取为“ 增加记录” , “ 删除记录” , “ 刷新记录” , “ 第条” 、“ 前一条” 、“ 下一条” ,“ 最后一条” 。对于“ 增加记录” 按钮, “ Add Menber Function” (增加成员功能)使用默认的成员功能名“ OnButtonaddnew” , 在OnBttonaddnew 函数中增加代

45、码。用相同的办法, 为其他按钮设置成员功能及增加代码。查询记录需要一个对话框用于输人查询条件,在 Resource View 的 Dialog中选择“ Insert Dialog” ,把对话框标题改为“ 查询” , 并增加组合控件(名为“ 请输人工程编号)、编辑框控件用于输人查询条件, 控件ID 用默认值。为使该对话框在工程中可以识别,必须定义一个新类并作为相应声明, 方法是: 进MFC ClassWizard 对话框、为新的资源(该对话框)创建一个新类CMyDlgl, 同时在 CmyView 中对其进行声明, 即把#include“MyDlgl.h”加人头文件。为“ Edit Box” 增加

46、成员变量时输人“Edit Box” 的成员量 m_query, 在“ 工程编号” 的编辑框控件右边加上一个标题为“ 查询” 按钮, 同时为“ 查询” 按钮增加消息处理函数。9. 5其它界面制作到目前为止, 主界面已基本设计好, 可以在不同的界面上显示不同的数据。Access数据库中, 除“ 总表” 以外, 还创建了两个查询“ 房产公司查询” 和“ 施工单位查询” 。现在要建立两个新的界面, 分别显示这两个查询中的字段数据。以制作“ 房产公司界面” 为例。先创建一个对话框, 标题为“ 房产公司界面” ,ID为“ IDD_DIALOG2”,为其创建新类CMyDlg2.在新对话框中增加数据源控件AD

47、D (通过插人ActiveX 控件_Microsoft ADD Data Control 实现), 其“ 命令类型” 为2_adCmdTable” ,“ 表或存储过程名称” 为“ 房产公司查询” 。数据源或数据环境仅为对话框设置了一个可用的数据环境, 但如何在对话框中处理数据环境中的数据, 是对话框制作中的又一个关键问题。为对话框引人用于数据操作和数据编辑的 ActiveX 控件_Microsoft DataCrid Control, 它以表格形式进行数据操作和编辑, 适当调整其位置, 将标题改为“ 房产公司相关字段” 。“ Source” 为 IDC ADODCFCGS” 。在主界面设置“ 房产公司人口” 按钮, 通过这个按钮, 可以进人房产公司界面。与“ 查询” 同样的方法建立消息处理函数并增加#include“MyDlg2.h”。9. 6有关说明本次开发只用了一个数据表(总表), 两个查询中的数据也是从这个表中提取出来, 可通过不同对话框对

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服