1、PxyAOMT正角:按逆时针方向旋转形成的角1、任意角 负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角 第一象限角的集合为36036090,kkk 第二象限角的集合为36090360180,kkk 第三象限角的集合为360180360270,kkk 第四象限角的集合为360270360360,kkk 终边在x轴上的角的集合为180,kk 终边在y轴上的角的集合为18090,kk 终边在坐标轴上的角的集合为90,kk 3、与角终边相同的角的集合为360,kk 4、已知是第几象限角,拟定*nn所在象
2、限的方法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则本来是第几象限相应的标号即为n终边所落在的区域 5、长度等于半径长的弧所对的圆心角叫做1弧度 6、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是lr 7、弧度制与角度制的换算公式:2360,1180,180157.3 8、若扇形的圆心角为 为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,2Crl,21122Slrr 9、设是一个任意大小的角,的终边上任意一点的坐标是,x y,它与原点的距离是220r rxy,则sinyr,cosxr,tan0yxx 10、三角函数在各象限的符号:第
3、一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正 11、三角函数线:sin,cos,tan 12、同角三角函数的基本关系:221 sincos1 2222sin1 cos,cos1 sin ;sin2tancos sinsintancos,costan 13、三角函数的诱导公式:1 sin 2sink,cos 2cosk,tan 2tankk 2 sinsin,coscos,tantan 3 sinsin,coscos,tantan 4 sinsin,coscos,tantan 口诀:函数名称不变,符号看象限 5 sincos2,cossin2 6 sincos2,cossi
4、n2 口诀:奇变偶不变,符号看象限 14、函数sinyx的图象上所有点向左(右)平移个单位长度,得到函数sinyx的图象;再将函数sinyx的图象上所有点的横坐标伸长(缩短)到本来的1倍(纵坐标不变),得到函数sinyx的图象;再将函数sinyx的图象上所有点的纵坐标伸长(缩短)到本来的倍(横坐标不变),得到函数sinyx 的图象 函数sinyx的图象上所有点的横坐标伸长(缩短)到本来的1倍(纵坐标不变),得到函数 sinyx的图象;再将函数sinyx的图象上所有点向左(右)平移个单位长度,得到函数sinyx的图象;再将函数sinyx的图象上所有点的纵坐标伸长(缩短)到本来的倍(横坐标不变),
5、得到函数sinyx 的图象 函数sin0,0yx 的性质:振幅:;周期:2;频率:12f;相位:x;初相:函数sinyx,当1xx时,取得最小值为miny;当2xx时,取得最大值为maxy,则maxmin12yy,maxmin12yy,21122xxxx 15、正弦函数、余弦函数和正切函数的图象与性质:sinyx cosyx tanyx 图象 定义域 R R,2x xkk 值域 1,1 1,1 R 最值 当22xkk时,max1y;当22xk k时,min1y 当2xkk时,max1y;当2xk k时,min1y 既无最大值也无最小值 周期性 2 2 奇偶性 奇函数 偶函数 奇函数 单调性 在
6、2,222kk k上是增函数;在 32,222kk k上是减函数 在2,2kkk上是增函数;在2,2kk k上是减函数 在,22kk k上是增函数 对称性 对称中心,0kk 对称轴2xkk 对称中心,02kk 对称轴xkk 对称中心,02kk 无对称轴 16、向量:既有大小,又有方向的量 数量:只有大小,没有方向的量 有向线段的三要素:起点、方向、长度 零向量:长度为0的向量 单位向量:长度等于1个单位的向量 平行向量(共线向量):方向相同或相反的非非零零向量零向量与任历来量平行 相等向量:长度相等且方向相同方向相同的向量 函 数 性 质 17、向量加法运算:三角形法则的特点:首尾相连 平行四
7、边形法则的特点:共起点 三角形不等式:ababab 运算性质:互换律:abba;结合律:abcabc;00aaa 坐标运算:设11,ax y,22,bxy,则1212,abxxyy 18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量 坐标运算:设11,ax y,22,bxy,则1212,abxxyy 设、两点的坐标分别为11,x y,22,xy,则1212,xxyy 19、向量数乘运算:实数与向量a的积是一个向量的运算叫做向量的数乘,记作a aa;当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,0a 运算律:aa;aaa;abab 坐标运算:设,ax
8、 y,则,ax yxy 20、向量共线定理:向量0a a 与b共线,当且仅当有唯一一个实数,使ba 设11,ax y,22,bxy,其中0b,则当且仅当12210 x yx y时,向量a、0b b 共线 21、平面向量基本定理:假如1e、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1、2,使1 122aee(不共线不共线的向量1e、2e作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段12 上的一点,1、2的坐标分别是11,x y,22,xy,当12 时,b a C abCC 点的坐标是1212,11xxyy 23、平面向量的数量积:cos0
9、,0,0180a ba bab零向量与任历来量的数量积为0 性质:设a和b都是非零向量,则0aba b当a与b同向时,a ba b;当a与b反向时,a ba b;22a aaa或aa aa ba b 运算律:a bb a;aba bab;abca cb c 坐标运算:设两个非零向量11,ax y,22,bxy,则1 212a bx xy y 若,ax y,则222axy,或22axy 设11,ax y,22,bxy,则1 2120abx xy y 设a、b都 是 非 零 向 量,11,ax y,22,bxy,是a与b的 夹 角,则1 21222221122cosx xy ya ba bxyxy 24、两角和与差的正弦、余弦和正切公式:coscoscossinsin;coscoscossinsin;sinsincoscossin;sinsincoscossin;tantantan1 tantan(tantantan1 tantan);tantantan1 tantan(tantantan1 tantan)25、二倍角的正弦、余弦和正切公式:sin22sincos 2222cos2cossin2cos1 1 2sin (2cos21cos2,21 cos2sin2)22tantan21 tan 26、22sincossin,其中tan