收藏 分销(赏)

高考数学资料——5年高考题3年模拟题分类汇编专题14圆锥曲线.doc

上传人:天**** 文档编号:2970718 上传时间:2024-06-12 格式:DOC 页数:84 大小:6.14MB
下载 相关 举报
高考数学资料——5年高考题3年模拟题分类汇编专题14圆锥曲线.doc_第1页
第1页 / 共84页
高考数学资料——5年高考题3年模拟题分类汇编专题14圆锥曲线.doc_第2页
第2页 / 共84页
高考数学资料——5年高考题3年模拟题分类汇编专题14圆锥曲线.doc_第3页
第3页 / 共84页
高考数学资料——5年高考题3年模拟题分类汇编专题14圆锥曲线.doc_第4页
第4页 / 共84页
高考数学资料——5年高考题3年模拟题分类汇编专题14圆锥曲线.doc_第5页
第5页 / 共84页
点击查看更多>>
资源描述

1、圆锥曲线第一部分 五年高考荟萃2009年高考题一、选择题1.(2009全国卷理)设双曲线(a0,b0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )A. B.2 C. D. 【解析】设切点,则切线的斜率为.由题意有又 解得: . 【答案】C2.(2009全国卷理)已知椭圆的右焦点为,右准线为,点,线段交于点,若,则=( )A. B. 2 C. D. 3 【解析】过点B作于M,并设右准线与X轴的交点为N,易知FN=1.由题意,故.又由椭圆的第二定义,得.故选A 3.(2009浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 (

2、 ) A B C D【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,则有,因【答案】C4.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点若,则椭圆的离心率是( ) A B C D 【解析】对于椭圆,因为,则【答案】D5.(2009北京理)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是 ( ) A直线上的所有点都是“点” B直线上仅有有限个点是“点” C直线上的所有点都不是“点” D直线上有无穷多个点(点不是所有的点)是“点”【解析】本题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能

3、力. 属于创新题型. 本题采作数形结合法易于求解,如图,设,则,消去n,整理得关于x的方程 (1)恒成立,方程(1)恒有实数解,应选A.6.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为( ). A. B. 5 C. D.【解析】双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以=,所以,故选D. 【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.7.(2009山东卷文)设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若O

4、AF(O为坐标原点)的面积为4,则抛物线方程为( ). A. B. C. D. 【解析】抛物线的焦点F坐标为,则直线的方程为,它与轴的交点为A,所以OAF的面积为,解得.所以抛物线方程为,故选B. 【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思想,因参数的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.8.(2009全国卷文)双曲线的渐近线与圆相切,则r= ( ) A. B.2 C.3 D.6【解析】本题考查双曲线性质及圆的切线知识,由圆心到渐近线的

5、距离等于r,可求r=.【答案】A9.(2009全国卷文)已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=(). . . .【解析】本题考查抛物线的第二定义,由直线方程知直线过定点即抛物线焦点(2,0),由及第二定义知联立方程用根与系数关系可求k=.【答案】D1.(2009安徽卷理)下列曲线中离心率为的是 . . . . 【解析】由得,选B.11.(2009福建卷文)若双曲线的离心率为2,则等于( )A. 2 B. C. D. 1【解析】由,解得a=1或a=3,参照选项知而应选D.12.(2009安徽卷文)下列曲线中离心率为的 是(. ( ) A. B. C. D. 【解析】依据双曲

6、线的离心率可判断得.选B。13.(2009江西卷文)设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 A B C D3【解析】由有,则,故选B.14.(2009江西卷理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为 A B C D 【解析】因为,再由有从而可得,故选B15.(2009天津卷文)设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( )A. B . C . D.【解析】由已知得到,因为双曲线的焦点在x轴上,故渐近线方程为16.(2009湖北卷理)已知双曲线的准线过椭圆的焦点,则直线与椭圆至多有一个交点的充要条件是( )A. B.

7、 C. D. 【解析】易得准线方程是 所以 即所以方程是联立可得由可解得A.17.(2009四川卷文、理)已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点在双曲线上.则( ) A. 12 B. 2 C. 0 D. 4【解析】由渐近线方程为知双曲线是等轴双曲线,双曲线方程是,于是两焦点坐标分别是(2,0)和(2,0),且或.不妨去,则,.18.(2009全国卷理)已知直线与抛物线相交于两点,为的焦点,若,则( )A. B. C. D. 【解析】设抛物线的准线为直线 恒过定点P .如图过分 别作于,于, 由,则,点B为AP的中点.连结,则, 点的横坐标为, 故点的坐标为, 故选D.19.(2

8、009全国卷理)已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率为 ( ) A B. C. D. 【解析】设双曲线的右准线为,过分 别作于,于, ,由直线AB的斜率为,知直线AB的倾斜角,由双曲线的第二定义有.又 .【答案】A20.(2009湖南卷文)抛物线的焦点坐标是( ) A(2,0) B(- 2,0) C(4,0) D(- 4,0)【解析】由,易知焦点坐标是,故选B. 21.(2009宁夏海南卷理)双曲线-=1的焦点到渐近线的距离为( )A. B.2 C. D.1【解析】双曲线-=1的焦点(4,0)到渐近线的距离为,【答案】A22.(2009陕西卷文)“”是“方程”表示焦点

9、在y轴上的椭圆”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【解析】将方程转化为 , 根据椭圆的定义,要使焦点在y轴上必须满足所以.【答案】C23.(2009全国卷文)设双曲线的渐近线与抛物线相切,则该双曲线的离心率等于( )A. B.2 C. D.【解析】由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即,故选择C.24.(2009湖北卷文)已知双曲线(b0)的焦点,则b=( )A.3 B. C. D. 【解析】可得双曲线的准线为,又因为椭圆焦点为所以有.即b2=3故b=.故C.27.(2009天津卷理)设抛物线=2

10、x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,=2,则BCF与ACF的面积之比=( )A. B. C. D. 【解析】由题知,又由A、B、M三点共线有即,故, ,故选择A。28.(2009四川卷理)已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( )A.2 B.3 C. D. 【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。【解析1】直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。【解析2】如图,由题意可知【

11、答案】A二、填空题29.(2009宁夏海南卷理)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线l的方程为_.【解析】抛物线的方程为,30.(2009重庆卷文、理)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 【解析1】因为在中,由正弦定理得则由已知,得,即设点由焦点半径公式,得则记得由椭圆的几何性质知,整理得解得,故椭圆的离心率【解析2】 由解析1知由椭圆的定义知 ,由椭圆的几何性质知所以以下同解析1.【答案】31.(2009北京文、理)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 .【解

12、析】本题主要考查椭圆的定义、焦点、长轴、短轴、焦距之间的关系以及余弦定理. 属于基础知识、基本运算的考查. ,又, 又由余弦定理,得,故应填.32.(2009广东卷理)巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为 【解析】,则所求椭圆方程为.33.(2009四川卷文)抛物线的焦点到准线的距离是 .【解析】焦点(1,0),准线方程,焦点到准线的距离是2.34.(2009湖南卷文)过双曲线C:的一个焦点作圆的两条切线,切点分别为A,B,若(O是坐标原点),则双曲线线C的离心率为 .【解析】, 35.(2009福建卷理)过抛物线的焦点F作倾斜角

13、为的直线交抛物线于A、B两点,若线段AB的长为8,则_ 【解析】由题意可知过焦点的直线方程为,联立有,又。36.(2009辽宁卷理)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F(4,0), 于是由双曲线性质|PF|PF|2a4 而|PA|PF|AF|5 两式相加得|PF|PA|9,当且仅当A、P、F三点共线时等号成立.【答案】937.(2009宁夏海南卷文)已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为 。【解析】设抛物线为y2kx,与yx联立方程组,消去y

14、,得:x2kx0,k22,故.【答案】38.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为 . 【解析】连虚轴一个端点、一个焦点及原点的三角形,由条件知,这个三角形的两边直角分别是是虚半轴长,是焦半距,且一个内角是,即得,所以,所以,离心率.39.(2009年上海卷理)已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_. 【解析】依题意,有,可得4c2364a2,即a2c29,故有b3。【答案】3三、解答题40.(2009年广东卷文)(本小题满分14分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两

15、个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程;(2)求的面积;(3)问是否存在圆包围椭圆G?请说明理由.解(1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:. (2 )点的坐标为 (3)若,由可知点(6,0)在圆外, 若,由可知点(-6,0)在圆外; 不论K为何值圆都不能包围椭圆G.41.(2009浙江理)(本题满分15分)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为 (I)求椭圆的方程; (II)设点在抛物线:上,在点处的切线与交于点当线段的中点与的中点的横坐标相等时,求的最小值解(I)由题意得所求的椭圆方程为,

16、(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则, 设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将代入不等式成立,因此的最小值为142.(2009浙江文)(本题满分15分)已知抛物线:上一点到其焦点的距离为(I)求与的值;(II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点作的垂线交于另一点若是的切线,求的最小值解()由抛物线方程得其准线方程:,根据抛物线定义点到焦点的距离等于它到准线的距离,即,解

17、得抛物线方程为:,将代入抛物线方程,解得()由题意知,过点的直线斜率存在且不为0,设其为。则,当 则。联立方程,整理得:即:,解得或,而,直线斜率为 ,联立方程整理得:,即: ,解得:,或,而抛物线在点N处切线斜率: MN是抛物线的切线, 整理得,解得(舍去),或,43.(2009北京文)(本小题共14分) 已知双曲线的离心率为,右准线方程为。()求双曲线C的方程;()已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值. 【解析】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力解()由题意,得,解得,所

18、求双曲线的方程为.()设A、B两点的坐标分别为,线段AB的中点为, 由得(判别式),点在圆上,.44.(2009北京理)(本小题共14分)已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力()由题意,得,解得, ,所求双曲线的方程为.()点在圆上,圆在点处的切线方程为,化简得.由及得,切线与双曲线C交于不同的两点A、B,且,且,设A、B两点的坐标分别为,则,且,. 的大小为.【解法2】()同解

19、法1.()点在圆上,圆在点处的切线方程为,化简得.由及得 切线与双曲线C交于不同的两点A、B,且,设A、B两点的坐标分别为,则, 的大小为.(且,从而当时,方程和方程的判别式均大于零).45.(2009江苏卷)(本题满分10分)在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。 46.(2009山东卷理)(本小题满分14分)设椭圆E: (a,b0)过M(2,) ,N (,1)两点,O为坐标原点,(I

20、)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。解:(1)因为椭圆E: (a,b0)过M(2,) ,N (,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即, 则=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆

21、心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以, 当时因为所以,所以,所以当且仅当时取”=”. 当时,. 当AB的斜率不存在时, 两个交点为或,所以此时,综上, |AB |的取值范围为即: 【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.47. (2009山东卷文)(本小题满分14分)设,在平面直角坐标系中,已知向量,向量,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆

22、心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(1R2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.解(1)因为,所以, 即. 当m=0时,方程表示两直线,方程为;当时, 方程表示的是圆当且时,方程表示的是椭圆; 当时,方程表示的是双曲线.(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,要使切线与轨迹E恒有两个交点A,B, 则使=,即,即, 且,要使, 需使,即,所以, 即且, 即恒成立.所以又因为直线为圆心在原点的圆的一条切线,所以圆

23、的半径为, 所求的圆为.当切线的斜率不存在时,切线为,与交于点或也满足.综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1R0)与x轴的左、右两个交点,直线过点B,且与轴垂直,S为上异于点B的一点,连结AS交曲线C于点T.(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。 解 方法一()当曲线C为半圆时,如图,由点T为圆弧的三等分点得BOT=60或120

24、.(1)当BOT=60时, SAE=30.又AB=2,故在SAE中,有 (2)当BOT=120时,同理可求得点S的坐标为,综上, ()假设存在,使得O,M,S三点共线.由于点M在以SB为直线的圆上,故.显然,直线AS的斜率k存在且k0,可设直线AS的方程为.由设点故,从而.亦即由得由,可得即经检验,当时,O,M,S三点共线. 故存在,使得O,M,S三点共线.方法二:()同方法一.()假设存在a,使得O,M,S三点共线.由于点M在以SO为直径的圆上,故.显然,直线AS的斜率k存在且k0,可设直线AS的方程为由设点,则有故由所直线SM的方程为O,S,M三点共线当且仅当O在直线SM上,即.故存在,使

25、得O,M,S三点共线.60.(2009辽宁卷文、理)(本小题满分12分)已知,椭圆C以过点A(1,),两个焦点为(1,0)(1,0)。(1) 求椭圆C的方程;(2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 ()解 由题意,c1,可设椭圆方程为。 因为A在椭圆上,所以,解得3,(舍去)。所以椭圆方程为 ()证明 设直线方程:得,代入得 设(,),(,)因为点(1,)在椭圆上,所以, 。又直线AF的斜率与AE的斜率互为相反数,在上式中以代,可得, 。所以直线EF的斜率。即直线EF的斜率为定值,其值为。 61.(2009宁夏海

26、南卷理)(本小题满分12分) 已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.()求椭圆C的方程;()若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=,求点M的轨迹方程,并说明轨迹是什么曲线。 解 ()设椭圆长半轴长及半焦距分别为,由已知得, 所以椭圆的标准方程为 ()设,其中。由已知及点在椭圆上可得。整理得,其中。(i)时。化简得 所以点的轨迹方程为,轨迹是两条平行于轴的线段。(ii)时,方程变形为,其中当时,点的轨迹为中心在原点、实轴在轴上的双曲线满足的部分。当时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;当时,点的轨迹为中心在原点、长轴在轴上的椭圆;62.(2009陕西卷文)(

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服