1、2023年奖学金测试(考试时间:90分钟 满分100分)题号一二三四五六总分总分人得分得 分评卷人一、填空题 (每空1分,共20分)1. 把写成用“亿”为单位的数是,并保存两位小数是。2. 在1到100这100个整数中2的倍数有个,6的倍数有个。3. 俊波超市某种饮料降价25%,现价是原价的%,该饮料是打了折。4. 小明家在学校的北偏东30方向1500米处,则学校在小明家的方向米处。5. 把377%,3.707,五个数从小到大排列为。6. 时=时分 1.6平方千米=公顷 9500毫升=升=立方米 7. 一张长方形纸片的长是10厘米,宽是5厘米。假如以长边为轴旋转一周,形成的图形的体积是立方厘米
2、。(结果保存)8. 一个等腰三角形的顶角与底角的比为14,则这个等腰三角形的顶角为,底角为。9. 升国旗时,国旗沿旗杆上升是现象,用钥匙开锁是,转动钥匙是现象。10. 数列是按某种规律排列的,数列中第2023个分数是。得 分评卷人二、判断题:对的打“”,错误打“” (每小题1分,共5分)1. 一个数不是正数就是负数。( )2. 对于任意一个整数,都存在一个数与它互为倒数。( )3. 用6厘米、7厘米、8厘米的三根小棒,可以拼成一个三角形。( )4. 假如,那么和成反比例。( )5. 某商场以100元的价格卖出两套不同的服装,一套赚20%,另一套亏20%,结果商场不赚也不亏。( )得 分评卷人三
3、、选择题(每题2分,共20分)1. 要表达出每年报考俊波中学的学生人数多少和增减变化情况,最佳画( )记录图。A. 条形 B. 扇形 C. 折线 D. 条形和扇形2. 将250克盐溶入1000克水中,盐占盐水的()。A25 B20 C40 D22.53从甲地开往乙地,客车要小时,货车要小时,客车与货车的速度比是()。A52 35 C53 D254. 一个两位数,十位上的数字是,个位上的数字是,表达这个两位数的式子是( )。A. 40+a B. 4+a C. 4+10a D. 4a5. 从10时到10时15分,分针转过的角度是( )。A. 360度 B. 180度 C. 90度 D. 270度6
4、. 一个口袋里装有红球3个,黄球1个(每次摸一个球再放回口袋中),小明摸了三次摸到的都是红球,那么第四次摸到黄球的也许性是( )。A. 100% B. C. D. 7. 圣诞节来了,某某中学七年级20班共有12个小组,假如每两个小组之间互赠一份礼物,那么这个班一共要准备( )份礼物。A. 132 B. 144 C. 66 D. 121 8. 若ab=72,那么(100a) (100b)=7( )。A. 20 B. 2 C. 200 D. 0.29. 在比例尺是18的图纸上甲乙两个圆的直径比是23,那么甲乙两个圆实际的直径比是( )。A. 18 B. 49 C. 23 D. 无法拟定10. 一段
5、公路长1000千米,甲队单独修15天完毕,乙队单独修20天完毕。两队合修几天完毕( )? A. 1000(15+20) B. 1() C. 1000() D. 1000+1000得 分评卷人四、计算题(共23分)1. 直接写出得数。(每小题1分,共5分) 10= 3.25= = 0.7+0.35+0.62=2. 用简便方法计算下面各题,不用简便计算的不给分。(每题3分,共12分)(1) (2)0.253212.5(3)999778+333666 (4)3. 解方程。 (每题3分,共6分)(1) (2)得 分评卷人五、应用题 (每题4分,共24分)1. 在比例尺是1500的图纸上,量得一个正方形
6、花坛的边长是4厘米,这个花坛的实际面积是多少平方米?2. 姐姐和妹妹都从家到学校上学,姐姐每小时走3.3千米,妹妹每小时走2.4千米,姐姐让妹妹先走3分钟,然后姐姐才出发追赶妹妹,通过多少分钟姐姐可以追上妹妹?3. 有甲乙两个工程队参与雅西高速某段公路的修建,甲队单独施工需要10天完毕,乙队单独施工需要15天完毕。甲乙两队合作2天后,剩下的工程由乙队单独完毕,则这项工程共用了多少天?4. 张阿姨将50000元存入银行,定期三年,年利率是2.52%。由于急需用钱只得将存了两年半的存款取出,此时按年利率0.72%的活期计算。这样比原本到期后取得的利息少拿多少元?5. 谢叔叔今年收获了3.6吨苹果,
7、其中一半达成一级质量标准,另一半达成二级质量标准。假如分级出售,一级苹果每公斤2.4元,二级苹果每公斤1.6元;假如不分级出售,每公斤为1.8元。请你算一算,如何出售较为合适?6. 有一群蜜蜂,其中五分之一落在杜鹃花上,三分之一落在栀子花上,这两者的差的三倍飞向月季花,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去。问:一共有几只蜜蜂?得 分评卷人六、解答题 (共8分)1作图题。(每小题1分,共2分)(1)画出三角形ABC的BC边上的高。BAC(2)根据下图中提供的信息,画一个三角形BCE与三角形ABC面积相等。2. 探索规律。 (每空1分,共2分) 观测下列数表: 1234第一行 2345第二行 3456第三行 4567第四行 第第第第 一二三四 列列列列 根据表中所反映的规律,猜想第6行与第6列的交叉点上的数应为_,第n行(n为正整数)与第n列的交叉点上的数应为_。3. 图形应用。 (4分)ECDAFB如图,大正方形的边长为6厘米,小正方形的边长为4厘米,求阴影部分的面积。 (结果保存)