资源描述
(完整版)概率和统计理科
1、以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.
(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.
2、假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5。5
6.5
7.0
若由资料知对呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数.
(3)估计使用年限为10年时,维修费用是多少?
3、为了研究“数学方式"对教学质量的影响,某高中老师分别用两种不同的教学方式对入学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
甲班:87、83、90、70、66、71、82、72、67、57、67、72、57、58、68、74、87、78、69、58
乙班:71、80、81、82、90、65、57、73、85、86、91、95、86、67、68、75、96、88、89、69
(Ⅰ)作出甲、乙两班学生成绩茎叶图;并求甲班数学成绩的中位数和乙班学生数学成绩的众数;
(Ⅱ)学校规定:成绩不低于80分的为优秀,请写出下面的2×2联列表,并判断有多大把握认为“成绩游戏与教学方式有关”.
甲班
乙班
合计
优秀
不优秀
合计
下面临界值表供参考:
P(K2≥k)
0.15
0.10
0。05
0。025
0.010
0.005
0。001
k
2.072
2.706
3。841
5.024
6.635
7.879
10。828
(参考公式:K2=)
4、某高校在年的自主招生考试中随机抽取了名学生的笔试成绩,按成绩分组:第一组,第二组,第三组,第四组,第五组得到的频率分布直方图如图所示:
(Ⅰ)根据频率分布直方图计算出样本数据的众数和中位数;(结果保留位小数)
(Ⅱ)为了能选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试;
(III)在(Ⅱ)的前提下,学校决定在这名学生中随机抽取名学生接受甲考官的的面试,求第四组至少有一名学生被甲考官面试的概率.
5、2016年1月1日起全国统一实施全面两孩政策。为了解适龄民众对放开生育二胎政策的态度,某市选取70后80后作为调查对象,随机调查了100位,得到数据如下表
(1)根据调查数据,判断是否有以上把握认为“生二胎与年龄有关”,并说明理由:
参考数据:
(参考公式:)
(2)以这100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望.
6、某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关",出了错误的同学认为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:
(I)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为期末数学成绩不低于90分与测试“过关”是否有关?说明你的理由.
(II)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为X,求X的分布列及数学期望.下面的临界值表供参考:
7、某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如2×2下列联表:
做不到科学用眼
能做到科学用眼
合计
男
45
10
55
女
30
15
45
合计
75
25
100
(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X,试求随机变量X的分布列和数学期望;
(2)若在犯错误的概率不超过P的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由.
附:独立性检验统计量,其中n=a+b+c+d.
独立性检验临界值表:
P(K2≥k0)
0.25
0。15
0.10
0.05
0.025
k0
1.323
2。072
2.706
3.840
5.024
1 / 5
展开阅读全文