收藏 分销(赏)

数字信号处理课设+语音信号的数字滤波.doc

上传人:精**** 文档编号:2670909 上传时间:2024-06-04 格式:DOC 页数:12 大小:1.81MB
下载 相关 举报
数字信号处理课设+语音信号的数字滤波.doc_第1页
第1页 / 共12页
数字信号处理课设+语音信号的数字滤波.doc_第2页
第2页 / 共12页
数字信号处理课设+语音信号的数字滤波.doc_第3页
第3页 / 共12页
数字信号处理课设+语音信号的数字滤波.doc_第4页
第4页 / 共12页
数字信号处理课设+语音信号的数字滤波.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、数字信号处理课设+语音信号的数字滤波 作者: 日期:2 个人收集整理 勿做商业用途语音信号的数字滤波 -利用双线性变换法实现IIR数字滤波器的设计一课程设计的目的通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。二设计方案论证1。IIR数字滤波器设计方法IIR数字滤波器是一种离散时间系统,其系统函数为假设MN,当MN时,系统函数可以看作一个IIR的子系统和一个(MN)的FIR子系统的级联。IIR数字滤波器的设计实际上是求

2、解滤波器的系数和 ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器.2。用双线性变换法设计IIR数字滤波器脉冲响应不变法的主要缺点是产生频率响应的混叠失真.这是因为从S平面到平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到/T/T之间,再用z=esT转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的-/T/T一条横带里;第二步再通过标准变换关系z=es1T将此横带变换到整个Z平面上去.这样就使S平面与Z平

3、面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1所示。图1双线性变换的映射关系为了将S平面的整个虚轴j压缩到S1平面j1轴上的-/T到/T段上,可以通过以下的正切变换实现 (1)式中,T仍是采样间隔。当1由-/T经过0变化到/T时,由经过0变化到+,也即映射了整个j轴。将式(1)写成将此关系解析延拓到整个S平面和S1平面,令j=s,j1=s1,则得再将S1平面通过以下标准变换关系映射到Z平面z=es1T从而得到S平面和Z平面的单值映射关系为: (2) (3)式(2)与式(3)是S平面与Z平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换

4、式(1)与式(2)的双线性变换符合映射变换应满足的两点要求.首先,把z=ej,可得 (4)即S平面的虚轴映射到Z平面的单位圆。其次,将s=+j代入式(4),得因此由此看出,当0时,z|1;当0时,z1。也就是说,S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上.因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。双线性变换法优缺点双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象.这是因为S平面与Z平面是单值的一一对应关系。S平面整个j轴单值地对应于Z平面单位圆一周,即频率轴是单值变换关系。

5、这个关系如式(4)所示,重写如下:上式表明,S平面上与Z平面的成非线性的正切关系,如图2所示。由图2看出,在零频率附近,模拟角频率与数字频率之间的变换关系接近于线性关系;但当进一步增加时,增长得越来越慢,最后当时,终止在折叠频率=处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。图2双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(4)及图2所示。由于这种频率之间的非线性变换关系,就产生了新的问题.首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这

6、种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图3所示。图3双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上.3。语音信号的采集:(1) 打开windows系统中的录音机软件,录入自己的声音“数字

7、信号处理”。(2) 将音频文件保存“ZJH。wav”(3) 打开音频转换软件,将录制的转换成单声道,采样速率为8KHz.4 语音信号的频谱分析:语音文件“ZJH1.wav”频谱分析程序:文件名为zz。mz1=wavread(ZJH1。wav);y1=z1(1:16384);Y1=fft(y1);n=0:16383;plot(n,Y1);gred;图像输出如图4:图4 语音信号频谱分析图5。滤波器的设计:根据以上IIR数字滤波器设计方法及要求,下面运用双线性变换法基于MATLAB设计一个IIR带通滤波器,其中带通的中心频率为p0=1500hz,通带截止频率p1=0 ,p2=3000hz;通带最大

8、衰减p=3dB;阻带最小衰减s=15dB。设计步骤:(1)根据任务,确定性能指标:在设计带通滤波器之前,首先根据工程实际的需要确定滤波器的技术指标:带通滤波器的阻带边界频率关于中心频率p0几何对称,因此ws1=wp0- (ws2-wp0)=300hz通带截止频率wc1=0,wc2=3000hz;阻带截止频率wr1=0,wr2=3300hz;阻带最小衰减s=3dB和通带最大衰减p=15dB;(2)用=2/Ttan(w/2)对带通数字滤波器H(z)的数字边界频率预畸变,得到带通模拟滤波器H(s)的边界频率主要是通带截止频率p1,p2;阻带截止频率s1,s2的转换。Matlab程序:文件名为kk2.

9、mfs=8000;x1=wavread(zjh1.wav);t=0:1/8000 *(size(x1)1)/8000;Au=0.03;d=Aucos(2pi5000t);x2=x1+d;wp=0。25*pi;ws=0.3*pi;Rp=1;Rs=15;Fs=8000;Ts=1/Fs;wp1=2/Tstan(wp/2); 将模拟指标转换成数字指标ws1=2/Ts*tan(ws/2); N,Wn=buttord(wp1,ws1,Rp,Rs,s); %选择滤波器的最小阶数Z,P,K=buttap(N); 创建butterworth模拟滤波器Bap,Aap=zp2tf(Z,P,K);b,a=lp2lp(

10、Bap,Aap,Wn); bz,az=bilinear(b,a,Fs); %用双线性变换法实现模拟滤波器到数字滤波器的转换H,W=freqz(bz,az); %绘制频率响应曲线figure(1)plot(W*Fs/(2*pi),abs(H)gridxlabel(频率Hz)ylabel(频率响应幅度)title(Butterworth)f1=filter(bz,az,x2);figure(2)subplot(2,1,1)plot(t,x2) %画出滤波前的时域图title(滤波前的时域波形);subplot(2,1,2)plot(t,f1); 画出滤波后的时域图title(滤波后的时域波形);s

11、ound(f1,8000); %播放滤波后的信号wavwrite(f1,fs,k1.wav);F0=fft(f1,1024);f=fs*(0:511)/1024;figure(3)y2=fft(x2,1024);subplot(2,1,1);plot(f,abs(y2(1:512)); 画出滤波前的频谱图title(滤波前的频谱)xlabel(Hz);ylabel(fuzhi);subplot(2,1,2)F1=plot(f,abs(F0(1:512); %画出滤波后的频谱图title(滤波后的频谱)xlabel(Hz);ylabel(fuzhi);滤波器的幅频特性:图5所设计的滤波器幅频特性

12、三设计结果与分析将语音信号进行数字采样并存为z1,对z1叠加15dB的噪音信号存为z2,对信号进行FFT变换,输出语音信号的时域波形图,幅频特性,z1的实际幅频特性。Matlab程序如下:文件名为zjh。ms=wavread(zjh1。wav);fs=8000;L=2floor(log2(length(s));s1=s(1:L);wavwrite(s1,fs,z1。wav);s2=awgn(s1,15);wavwrite(s2,fs,z2。wav);S1=fft(s1);n=0:L1;subplot(311);plot(n,s1);k=0:L-1;subplot(312);plot(k,abs

13、(S1));deft=fs/L;subplot(313);plot(k(1:L/2)*deft,abs(S1(1:L/2));输出如图:将原文件截取2s存为z1.wav,将叠加噪音文件存为z2。wav。图6对原始语音进行分析,Matlab程序如下:文件名为kk。mfs=8000;x1=wavread(zjh1.wav); sound(x1,8000); y1=fft(x1,1024); f=fs(1:512)/1024;figure(1)plot(x1) title(原始语音信号);xlabel(time n);ylabel(fuzhi n);figure(2)freqz(x1) title(

14、频率响应图)figure(3)subplot(2,1,1);plot(abs(y1(1:512)) title(原始语音信号FFT频谱)subplot(2,1,2);plot(f,abs(y1(1:512));title(原始语音信号频谱)xlabel(Hz);ylabel(fuzhi);图7原始语音信号图8原始语音信号的频率响应图滤波器的效果分析:信噪比:X=10*log10(B/N)A是加噪音信号之后通过滤波器,所得信号总能量 .公式为:A=sum(abs(z1).2)A = 45.3256B是没加噪音信号通过滤波器的能量。公式为:B=sum(abs(z2).2)B = 40。1574N是

15、噪音能量。N=A-B=5。1682X是信噪比.X=10log10(B/N)X=8。9043四设计体会通过这个实验,对设计带通数字滤波器的整个过程有了很好的掌握.其中双线性变换法,巴特沃斯设计模拟滤波器的运用,也比较熟悉了.通过对数字带通滤波器的设计,熟悉了MATLAB的运行环境,初步掌握了MATLAB语言在数字信号处理中一些基本库函数的调用和编写基本程序等应用;熟悉了滤波器设计的一般原理,对滤波器有了一个感性的认识;学会了数字高通滤波器设计的一般步骤;加深了对滤波器设计中产生误差的原因以及双线性变换法优缺点的理解和认识.总之,使理论联系了实际,巩固并深化了对课本基本知识的认识和理解,使理论得以

16、升华.五参考文献1 楼顺天、李博菡。 基于matlab的系统分析与设计信号处理M。西安:西安电子科技大学出版社,1998:78-87。 2 蒙以正. matlab5.x应用与技巧M。 北京:科学出版社,1999.5:7089。3 程佩青.数字信号处理教程(第二版)M。北京:清华大学出版社,2004.4柴政, 任海平. 关于数字滤波器设计方式的探讨J。通信电源技术,2007,(01).78805曹锰。 高阶FIR数字滤波器设计 J.北京邮电大学学报,2004.(02)。65-60。6 戴育良。 用MATLAB辅助设计FIR数字滤波器J。台州学院学报,2005,(06)。 9399。沈 阳 大 学

展开阅读全文
收益排行: 01、路***(¥15400+),
02、曲****(¥15300+),
03、wei****016(¥13200+),
04、大***流(¥12600+),
05、Fis****915(¥4200+),
06、h****i(¥4100+),
07、Q**(¥3400+),
08、自******点(¥2400+),
09、h*****x(¥1400+),
10、c****e(¥1100+),
11、be*****ha(¥800+),
12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服