收藏 分销(赏)

极限四则运算法则.doc

上传人:天**** 文档编号:2669072 上传时间:2024-06-04 格式:DOC 页数:5 大小:199.55KB
下载 相关 举报
极限四则运算法则.doc_第1页
第1页 / 共5页
极限四则运算法则.doc_第2页
第2页 / 共5页
极限四则运算法则.doc_第3页
第3页 / 共5页
极限四则运算法则.doc_第4页
第4页 / 共5页
极限四则运算法则.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。定理1:若,则存在,且。证明: 只证,过程为,对,当 时,有,对此,当时,有,取,当时,有 所以。 其它情况类似可证。注:本定理可推广到有限个函数的情形。 定理2:若,则存在,且。证明:因为,(均为无穷小),记, 为无穷小, 。推论1:(为常数)。推论2:(为正整数)。定理3:设,则。证明:设(为无穷小),考虑差: 其分子为无穷小,分母,我们不难证明有界(详细过程见书上)为无穷小,记为,所以, 。注:以上定理对数列亦成立。定理4:如果,且,则。【例1】。【例2】。推论1:设为一多项式,当。推论2:设均为多项式,且,则。【例3】。【例4】(因为)。注:若,则不能用推论2来求极限,需采用其它手段。【例5】求。解:当时,分子、分母均趋于0,因为,约去公因子,所以 。【例6】求。解:当全没有极限,故不能直接用定理3,但当时,所以。【例7】求。解:当时,故不能直接用定理5,又,考虑:, 。【例8】若,求a,b的值。当时,且【例9】设为自然数,则 。证明:当时,分子、分母极限均不存在,故不能用1.6定理5,先变形: 【例10】求。解:当时,这是无穷多项相加,故不能用定理1,先变形: 原式。【例11】证明为的整数部分。证明:先考虑,因为是有界函数,且当时,所以由有界量与无穷小量的乘积是无穷小,得。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服