收藏 分销(赏)

czm内聚力模型(ppt文档).ppt

上传人:w****g 文档编号:2652999 上传时间:2024-06-03 格式:PPT 页数:44 大小:4.86MB
下载 相关 举报
czm内聚力模型(ppt文档).ppt_第1页
第1页 / 共44页
czm内聚力模型(ppt文档).ppt_第2页
第2页 / 共44页
czm内聚力模型(ppt文档).ppt_第3页
第3页 / 共44页
czm内聚力模型(ppt文档).ppt_第4页
第4页 / 共44页
czm内聚力模型(ppt文档).ppt_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、TheoreticalandComputationalAspectsofCohesiveZoneModelingNAMASCHANDRADepartmentofMechanicalEngineeringFAMU-FSUCollegeofEngineeringFloridaStateUniversityTallahassee,Fl-32310AMMLWhatisCZMandwhyisitimportantqInthestudyofsolidsanddesignofnano/micro/macrostructures,thermomechanicalbehaviorismodeledthrough

2、constitutiveequations.qTypicallyisacontinuousfunctionofandtheirhistory.qDesignislimitedbyamaximumvalueofagivenparameter()atanylocalpoint.qWhathappensbeyondthatconditionistherealmoffracture,damage,andfailuremechanics.qCZMoffersanalternativewaytoviewandfailureinmaterials.AMML1.FractureMechanics-1.Line

3、arsolutionsleadstosingularfields-difficulttoevaluate2.Fracturecriteriabasedon3.Non-lineardomain-solutionsarenotunique4.Additionalcriteriaarerequiredforcrackinitiationandpropagation2.Basicbreakdownoftheprinciplesofmechanicsofcontinuousmedia3.Damagemechanics-1.caneffectivelyreducethestrengthandstiffne

4、ssofthematerialinanaveragesense,butcannotcreatenewsurfaceFracture/DamagetheoriestomodelfailureAMMLCZM can create new surfaces.Maintains continuity conditions mathematically,despite the physical separation.CZM represents physics of the fracture process at the atomic scale.It can also be perceived at

5、the meso-scale as the effect of energy dissipation mechanisms,energy dissipated both in the forward and the wake regions of the crack tip.Uses fracture energy(obtained from fracture tests)as a parameter and is devoid of any ad-hoc criteria for fractureinitiation and propagation.Eliminates singularit

6、y of stress and limits it to the cohesive strength of the the material.It is an ideal framework to model strength,stiffness and failure in an integrated manner.Applications:geomaterials,biomaterials,concrete,metallics,composites.CZMisanAlternativemethodtoModelSeparationAMMLAMMLConceptualFrameworkofC

7、ohesiveZoneModelsforinterfacesAMMLMolecularforceofcohesionactingneartheedgeofthecrackatitssurface(regionII).TheintensityofmolecularforceofcohesionfisfoundtovaryasshowninFig.a.Theinteratomicforceisinitiallyzerowhentheatomicplanesareseparatedbynormalintermoleculardistanceandincreasestohighmaximumafter

8、thatitrapidlyreducestozerowithincreaseinseparationdistance.EisYoungsmodulusandissurfacetension(Barenblatt,G.I,(1959),PMM(23)p.434)Figure (a)Variation of Cohesive traction (b)I-inner region,II-edge regionDevelopmentofCZModels-HistoricalReviewq Barenblatt(1959)wasfirsttoproposetheconceptofCohesivezone

9、modeltobrittlefractureAMMLForDuctilemetals(steel)CohesivestressintheCZMisequatedtoyieldstressYAnalyzedforplasticzonesizeforplatesundertensionLengthofyieldingzones,theoreticalcracklengtha,andappliedloadingTarerelatedintheform(Dugdale,D.S.(1960),J.Mech.Phys.Solids,8,p.100)qDugdale(1960)independently d

10、eveloped the concept of cohesive stressAMMLqThetheoryofCZMisbasedonsoundprinciples.qHoweverimplementationofmodelforpracticalproblemsgrewexponentiallyforpracticalproblemswithuseofFEMandadventoffastcomputing.qModelhasbeenrecastasaphenomenologicaloneforanumberofsystemsandboundaryvalueproblems.qThepheno

11、menologicalmodelscanmodeltheseparationprocessbutnottheeffectofatomicdiscreteness.PhenomenologicalModelsHillerborgetal.1976Ficticiouscrackmodel;concreteBazantetal.1983crackbandtheory;concreteMorganetal.1997earthquakerupturepropagation;geomaterialPlanasetal,1991,concreteEisenmenger,2001,stonefragm-ent

12、ationsqueezingbyevanescentwaves;brittle-biomaterialsAmruthrajetal.,1995,compositesGrujicic,1999,fracturebeha-viorofpolycrystalline;bicrystalsCostanzoetal;1998,dynamicfr.Ghosh2000,Interfacialdebo-nding;compositesRahulkumar2000viscoelasticfracture;polymersLiechti2001Mixed-mode,time-depend.rubber/metal

13、debondingRavichander,2001,fatigueTevergaard1992particle-matrixinterfacedebondingTvergaardetal1996elastic-plasticsolid:ductilefrac.;metalsBrocks2001crackgrowthinsheetmetalCamacho&ortiz;1996,impactDollar;1993Interfacialdebondingceramic-matrixcompLokhandwalla2000,urinarystones;biomaterialsAMMLqCZMessen

14、tiallymodelsfractureprocesszonebyalineoraplaneaheadofthecracktipsubjectedtocohesivetraction.qTheconstitutivebehaviorisgivenbytraction-displacementrelationship,obtainedbydefiningpotentialfunctionofthetypewherearenormalandtangentialdisplacementjumpTheinterfacetractionsaregivenbyFractureprocesszoneandC

15、ZMMaterialcracktipMathematicalcracktipxyAMMLAMMLAMMLWhatistherelationshipbetweenthephysics/mechanicsoftheseparationprocessandshapeofCZM?(Thereareasmanyshapes/equationsastherearenumberofinterfaceproblemssolved!)WhatistherelationshipbetweenCZMandfracturemechanicsofbrittle,semi-brittleandductilemateria

16、ls?WhatistheroleofscalingparameterinthefidelityofCZMtomodelinterfacebehavior?Whatisthephysicalsignificanceof-ShapeofthecurveC-tmaxandinterfacestrength-SeparationdistancesepandCOD?-Areaunderthecurve,workoffracture,fracturetoughnessG(localandglobal)Critical Issues in the application of CZM to interfac

17、e modelsAMMLCZMisanexcellenttoolwithsoundtheoreticalbasisandcomputationalease.Lackspropermechanicsandphysicsbasedanalysisandevaluation.Alreadywidelyusedinfracture/fragmentation/failureImportance of shape of CZMMotivationforstudyingCZMcriticalissuesaddressedhereScales-What range of CZM parameters are

18、 valid?vMPaorGPaforthetractionvJorKJforcohesiveenergyvnmorforseparationdisplacementWhat is the effect of plasticity in the bounding material on the fracture processesEnergy-Energy characteristics during fracture process and how energy flows in to the cohesive zone.AMMLAtomisticsimulationstoextractco

19、hesivepropertiesMotivationWhatistheapproximatescaletoexaminefractureinasolidvAtomisticatnmscaleorvGrainsatscaleorvContinuumatmmscaleArethestress/strainandenergyquantitiescomputedatonescalebevalidatotherscales?(canweevendefinestress-strainatatomicscales?)AMMLEmbedded Atom Method EnergyFunctions(D.J.O

20、h and R.A.Johnson,1989,Atomic Simulation of Materials,EdtsEdts:V:V Vitek Vitek and D.J.and D.J.SrolovitzSrolovitz,p 233,p 233)ThetotalinternalenergyofthecrystalwhereandContributiontoelectrondensityofithatomandjth atom.Twobodycentralpotentialbetweenithatomandjth atom.Internalenergyassociatedwithatomi

21、EmbeddedEnergyofatomi.AMMLCONSTRUCTION OF COMPUTATIONAL CRYSTALAMMLBoundary Conditions for GB Slidingq Construct symmetric tilt boundaries(STDB)by rotating a single crystal(reflection)q Periodic boundary condition in X directionq Restrain few layers in lower crystalqApply body force on top crystal A

22、MMLAsmallportionofCSLgrainbounarybeforeAndafterapplicationoftangentialforce Curve in Shear directionShetC,LiH,ChandraN;InterfacemodelsforGBslidingandmigrationMATERSCIFORUM357-3:577-5852001AMMLAsmallportionofCSLgrainboundarybeforeAndafterapplicationofnormalforceCurve in Normal directionAMMLSummarycom

23、plete debonding occurs when the distance of separation reaches a value of 2 to 3 .For 9 bicrystal tangential work of separation along the grain boundary is of the order 3 and normal work of separation is of the order 2.6 .For 3-bicrystal,the work of separation ranges from 1.5 to 3.7 .Rose et al.(198

24、3)have reported that the adhesive energy(work of separation)for aluminum is of the order 0.5 and the separation distance 2 to 3 Measured energy to fracture copper bicrystal with random grain boundary is of the order 54 and for 11 copper bicrystal the energy to fracture is more than 8000 Resultsanddi

25、scussiononatomisticsimulationImplications The numerical value of the cohesive energy is very low when compared to the observed experimental results Atomistic simulation gives only surface energy ignoring the inelastic energies due to plasticity and other micro processes.It should also be noted that

26、the exper-imental value of fracture energy includes the plastic work in addition to work of separation (J.R Rice and J.S Wang,1989)AMMLMaterialNomenclatureparticle sizeAluminiumalloys2024-T35135149001.22024-T85125.480001.2TitaniumalloysT2180489702-4T681301300002-4SteelMediumCarbon54126362-4Highstren

27、gthalloys984161718Ni(300)maraging7625030Alumina4-834-24010SiCceramics6.10.11to1.28PolymersPMMA1.2-1.7220TableofsurfaceandfractureenergiesofstandardmaterialsAMMLEnergybalanceandeffectofplasticityintheboundingmaterialAMMLMotivationItisperceivedthatCZMrepresentsthephysicalseparationprocess.Asseenfromat

28、omistics,fractureprocesscomprisesmostlyofinelasticdissipativeenergies.Therearemanyinelasticdissipativeprocessspecifictoeachmaterialsystem;someoccurwithinFPZ,andsomeintheboundingmaterial.Howtheenergyflowtakesplaceundertheexternalloadingwithinthecohesivezoneandneighboringboundingmaterialnearthecrackti

29、p?Whatisthespatialdistributionofplasticenergy?Istherealinkbetweenmicromechanicsprocessesofthematerialandcurve.AMMLPlasticityvs.otherDissipationMechanismsqSinceboundingmaterialhasitsowninelasticconstitutiveequation,whatistheproportionofenergydissipationwithinthatdomainandfractureregiongivenbyCZM.qRol

30、eofplasticityintheboundingmaterialisclearlyunique;andcannotbeassignedtoCZM.AMMLAl2024-T3alloyTheinputenergyinthecohesivemodelarerelatedtotheinterfacialstressandcharacteristicdisplacementasTheinputenergyisequatedtomaterialparameterBasedonthemeasuredfracturevalueCohesivezoneparametersofaductilemateria

31、lAMMLE=72GPa,=0.33,StressstraincurveisgivenbywhereandfractureparameterMaterialmodelfortheboundingmaterialElasto-plasticmodelforAl2024-T3AMMLGeometryandboundary/loadingconditionsa=0.025m,b=0.1m,h=0.1mAMMLFiniteelementmesh28189nodes,24340planestrain4nodeelements,7300cohesiveelements(widthofelementalon

32、gthecrackplanismAMMLGlobalenergydistributionareconfinedtoboundingmaterialiscohesiveenergy,asumtotalofalldissipativeprocessconfinedtoFPZandcannotberecoveredduringelasticunloadingandreloading.qPurelyelasticanalysisTheconventionalfracturemechanicsusestheconceptofstrainenergyreleaserateUsingCZM,thisfrac

33、tureenergyisdissipatedandnoplasticdissipationoccurs,suchthatAMMLGlobalenergydistribution(continued)IssuesFractureenergyobtainedfromexperi-mentalresultsissumtotalofalldissipativeprocessesinthematerialforinitiatingandpropagatingfracture.Shouldthisenergybedissipatedentirelyincohesivezone?Shouldbespliti

34、ntotwoidentifiabledissipationprocesses?TwodissipativeprocessPlasticitywithinBoundingmaterialMicro-separationProcessinFPZqAnalysiswithelasto-plasticmaterialmodelwhererepresentsotherfactorsarisingfromtheshapeofthetraction-displacementrelationsImplicationsLeavesnoenergyforplasticworkintheboundingmateri

35、alInwhatratioitshouldbedivided?Divisionisnon-trivialsinceplasticdissipationdependsongeometry,loadingandotherparametersasAMMLWhatarethekeyCZMparametersthatgoverntheenergetics?qincohesivezonedictatesthestresslevelachievableintheboundingmaterial.qYieldintheboundingmaterialdependsonitsyieldstrengthandit

36、spostyield(hardeningcharacteristics.qThusplaysacrucialroleindeterminingplasticityintheboundingmaterial,shapeofthefractureprocesszoneandenergydistribution.(otherparameterslikeshapemayalsobeimportant)AMMLGlobalenergydistribution(continued)Variationofcohesiveenergyandplasticenergyforvariousratios(1)(2)

37、(3)(4)Recoverableelasticwork95to98%ofexternalworkPlasticdissipationdependsonElasticbehaviorplasticityoccurs.PlasticityincreaseswithAMMLRelationbetweenplasticworkandcohesivework(verysmallscaleplasticity),plasticenergy15%oftotaldissipation.Plasticityinducedattheinitialstagesofthecrackgrowthplasticityc

38、easesduringcrackpropagation.Verysmallerrorisinducedbyignoringplasticity.plasticworkincreasesconsiderably,100to200%asthatofcohesiveenergy.Forlargescaleplasticityproblemstheamountoftotaldissipation(plasticandcohesive)ismuchhigherthan8000Plasticdissipationverysensitivetoratiobeyond2till3Crackcannotprop

39、agatebeyondandcompletelyelasticbelowAMMLVariationofNormalTractionalongtheinterfaceThelengthofcohesivezoneisalsoaffectedbyratio.Thereisadirectcorrelationbetweentheshapeofthetraction-displacementcurveandthenormaltractiondistributionalongthecohesivezone.Forlowerratiosthetraction-separationcurveflattens

40、,thistendtoincreasetheoverallcohesivezonelength.AMMLLocal/spatialEnergyDistributionAsetofpatchofelements(eachhavingapp.50elements)wereselectedintheboundingmaterial.Thepatchesareapproximatelysquares(130).Theyarespacedequallyfromeachother.Adjoiningthesepatches,patchesofcohesiveelementsareconsideredtor

41、ecordthecohesiveenergies.AMMLVariationofCohesiveEnergyThevariationofCohesiveEnergyintheWakeandForwardregionasthecrackpropagates.ThenumbersindicatetheCohesiveElementPatchnumbersFallingJustBelowthebindingelementpatchesThecohesiveenergyinthepatchincreasesuptopointC(correspondingtoinFigure)afterwhichthe

42、cracktipispresumedtoadvance.Theenergyconsumedbythecohesiveelementsatthisstageisapproximately1/7ofthetotalcohesiveenergyforthepresentCZM.OncethepointCiscrossed,thepatchofelementsfallintothewakeregion.Therateofcohesivezoneenergyabsorptiondependsontheslopeofthecurveandtherateatwhichelasticunloadingandp

43、lasticdissipationtakesplaceintheadjoiningmaterial.Thecurvesflattensoutoncetheentirecohesiveenergyisdissipatedwithinagivenzone.AMMLVariationofElasticEnergyVariationofElasticEnergyinVariousPatchofElementsasaFunctionofCrackExtension.ThenumbersindicatePatchnumbersstartingfromInitialCrackTipConsiderablee

44、lasticenergyisbuiltuptillthepeakofcurveisreachedafterwhichthecracktipadvances.AfterpassingC,thecohesiveelementsnearthecracktipareseparatedandtheelementsinthispatchbecomesapartofthewake.Atthisstage,thevaluesofnormaltractionreducesfollowingthedownwardslopeofcurvefollowingwhichthestressinthepatchreduce

45、saccompaniedbyreductioninelasticstrainenergy.Thereductioninelasticstrainenergyisusedupindissipatingcohesiveenergytothosecohesiveelementsadjoiningthispatch.Theinitialcracktipisinherentlysharpleadingtohighlevelsofstressfieldsduetowhichhigherenergyforpatch1Cracktipbluntsforadvancingcracktipleadingtoalo

46、werlevelsofstress,resultinginreducedenergylevelinotherpatches.AMMLVariationofdissipatedplasticenergyinvariouspatchedasafunctionofcrackextension.Thenumberindicatepatchnumbersstartingfrominitialcracktip.VariationofPlasticWork()plasticenergyaccumulatesconsiderablyalongwithelasticenergy,whenthelocalstre

47、ssesboundingmaterialexceedstheyieldAfterreachingpeakpointConcurvetractionreducesandplasticdeformationceases.Accumulatedplasticworkisdissipativeinnature,itremainsconstantafterdebonding.AlltheenergytransferinthewakeregionoccursfromelasticstrainenergytothecohesivezoneTheaccumulatedplasticworkdecreasesu

48、ptopatch4fromthatof1asaconsequenceofreductionoftheinitialsharpnessofthecrack.Mechanicalworkisincreasedtopropagatethecrack,duringwhichthedoesnotincreaseresultinginincreasedplasticwork.Thatincreaseinplasticworkcausestheincreaseinthestoredworkinpatches4andbeyondAMMLVariationofPlasticWork()VariationofPl

49、asticworkandElasticworkinvariouspatchofelementsalongtheinterfaceforthecaseof.Thenumbersindicatestheenergyinvariouspatchofelementsstartingfromthecracktip.,thereisnoplasticdissipation.plasticworkisinducedonlyinthefirstpatchofelementNoplasticdissipationduringcrackgrowthplaceintheforwardregionInitialsha

50、rpcracktipprofileinduceshighlevelsofstressandhenceplasticityinboundingmaterial.Duringcrackpropagation,tipbluntsresultingreducedlevelofstressesleadingtoreducedelasticenergiesandnoplasticitycondition.AMMLContourplotofyieldlocusaroundthecohesivecracktipatthevariousstagesofcrackgrowth.AMMLSchematicofcra

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服