1、TheoreticalandComputationalAspectsofCohesiveZoneModelingNAMASCHANDRADepartmentofMechanicalEngineeringFAMU-FSUCollegeofEngineeringFloridaStateUniversityTallahassee,Fl-32310AMMLWhatisCZMandwhyisitimportantqInthestudyofsolidsanddesignofnano/micro/macrostructures,thermomechanicalbehaviorismodeledthrough
2、constitutiveequations.qTypicallyisacontinuousfunctionofandtheirhistory.qDesignislimitedbyamaximumvalueofagivenparameter()atanylocalpoint.qWhathappensbeyondthatconditionistherealmoffracture,damage,andfailuremechanics.qCZMoffersanalternativewaytoviewandfailureinmaterials.AMML1.FractureMechanics-1.Line
3、arsolutionsleadstosingularfields-difficulttoevaluate2.Fracturecriteriabasedon3.Non-lineardomain-solutionsarenotunique4.Additionalcriteriaarerequiredforcrackinitiationandpropagation2.Basicbreakdownoftheprinciplesofmechanicsofcontinuousmedia3.Damagemechanics-1.caneffectivelyreducethestrengthandstiffne
4、ssofthematerialinanaveragesense,butcannotcreatenewsurfaceFracture/DamagetheoriestomodelfailureAMMLCZM can create new surfaces.Maintains continuity conditions mathematically,despite the physical separation.CZM represents physics of the fracture process at the atomic scale.It can also be perceived at
5、the meso-scale as the effect of energy dissipation mechanisms,energy dissipated both in the forward and the wake regions of the crack tip.Uses fracture energy(obtained from fracture tests)as a parameter and is devoid of any ad-hoc criteria for fractureinitiation and propagation.Eliminates singularit
6、y of stress and limits it to the cohesive strength of the the material.It is an ideal framework to model strength,stiffness and failure in an integrated manner.Applications:geomaterials,biomaterials,concrete,metallics,composites.CZMisanAlternativemethodtoModelSeparationAMMLAMMLConceptualFrameworkofC
7、ohesiveZoneModelsforinterfacesAMMLMolecularforceofcohesionactingneartheedgeofthecrackatitssurface(regionII).TheintensityofmolecularforceofcohesionfisfoundtovaryasshowninFig.a.Theinteratomicforceisinitiallyzerowhentheatomicplanesareseparatedbynormalintermoleculardistanceandincreasestohighmaximumafter
8、thatitrapidlyreducestozerowithincreaseinseparationdistance.EisYoungsmodulusandissurfacetension(Barenblatt,G.I,(1959),PMM(23)p.434)Figure (a)Variation of Cohesive traction (b)I-inner region,II-edge regionDevelopmentofCZModels-HistoricalReviewq Barenblatt(1959)wasfirsttoproposetheconceptofCohesivezone
9、modeltobrittlefractureAMMLForDuctilemetals(steel)CohesivestressintheCZMisequatedtoyieldstressYAnalyzedforplasticzonesizeforplatesundertensionLengthofyieldingzones,theoreticalcracklengtha,andappliedloadingTarerelatedintheform(Dugdale,D.S.(1960),J.Mech.Phys.Solids,8,p.100)qDugdale(1960)independently d
10、eveloped the concept of cohesive stressAMMLqThetheoryofCZMisbasedonsoundprinciples.qHoweverimplementationofmodelforpracticalproblemsgrewexponentiallyforpracticalproblemswithuseofFEMandadventoffastcomputing.qModelhasbeenrecastasaphenomenologicaloneforanumberofsystemsandboundaryvalueproblems.qThepheno
11、menologicalmodelscanmodeltheseparationprocessbutnottheeffectofatomicdiscreteness.PhenomenologicalModelsHillerborgetal.1976Ficticiouscrackmodel;concreteBazantetal.1983crackbandtheory;concreteMorganetal.1997earthquakerupturepropagation;geomaterialPlanasetal,1991,concreteEisenmenger,2001,stonefragm-ent
12、ationsqueezingbyevanescentwaves;brittle-biomaterialsAmruthrajetal.,1995,compositesGrujicic,1999,fracturebeha-viorofpolycrystalline;bicrystalsCostanzoetal;1998,dynamicfr.Ghosh2000,Interfacialdebo-nding;compositesRahulkumar2000viscoelasticfracture;polymersLiechti2001Mixed-mode,time-depend.rubber/metal
13、debondingRavichander,2001,fatigueTevergaard1992particle-matrixinterfacedebondingTvergaardetal1996elastic-plasticsolid:ductilefrac.;metalsBrocks2001crackgrowthinsheetmetalCamacho&ortiz;1996,impactDollar;1993Interfacialdebondingceramic-matrixcompLokhandwalla2000,urinarystones;biomaterialsAMMLqCZMessen
14、tiallymodelsfractureprocesszonebyalineoraplaneaheadofthecracktipsubjectedtocohesivetraction.qTheconstitutivebehaviorisgivenbytraction-displacementrelationship,obtainedbydefiningpotentialfunctionofthetypewherearenormalandtangentialdisplacementjumpTheinterfacetractionsaregivenbyFractureprocesszoneandC
15、ZMMaterialcracktipMathematicalcracktipxyAMMLAMMLAMMLWhatistherelationshipbetweenthephysics/mechanicsoftheseparationprocessandshapeofCZM?(Thereareasmanyshapes/equationsastherearenumberofinterfaceproblemssolved!)WhatistherelationshipbetweenCZMandfracturemechanicsofbrittle,semi-brittleandductilemateria
16、ls?WhatistheroleofscalingparameterinthefidelityofCZMtomodelinterfacebehavior?Whatisthephysicalsignificanceof-ShapeofthecurveC-tmaxandinterfacestrength-SeparationdistancesepandCOD?-Areaunderthecurve,workoffracture,fracturetoughnessG(localandglobal)Critical Issues in the application of CZM to interfac
17、e modelsAMMLCZMisanexcellenttoolwithsoundtheoreticalbasisandcomputationalease.Lackspropermechanicsandphysicsbasedanalysisandevaluation.Alreadywidelyusedinfracture/fragmentation/failureImportance of shape of CZMMotivationforstudyingCZMcriticalissuesaddressedhereScales-What range of CZM parameters are
18、 valid?vMPaorGPaforthetractionvJorKJforcohesiveenergyvnmorforseparationdisplacementWhat is the effect of plasticity in the bounding material on the fracture processesEnergy-Energy characteristics during fracture process and how energy flows in to the cohesive zone.AMMLAtomisticsimulationstoextractco
19、hesivepropertiesMotivationWhatistheapproximatescaletoexaminefractureinasolidvAtomisticatnmscaleorvGrainsatscaleorvContinuumatmmscaleArethestress/strainandenergyquantitiescomputedatonescalebevalidatotherscales?(canweevendefinestress-strainatatomicscales?)AMMLEmbedded Atom Method EnergyFunctions(D.J.O
20、h and R.A.Johnson,1989,Atomic Simulation of Materials,EdtsEdts:V:V Vitek Vitek and D.J.and D.J.SrolovitzSrolovitz,p 233,p 233)ThetotalinternalenergyofthecrystalwhereandContributiontoelectrondensityofithatomandjth atom.Twobodycentralpotentialbetweenithatomandjth atom.Internalenergyassociatedwithatomi
21、EmbeddedEnergyofatomi.AMMLCONSTRUCTION OF COMPUTATIONAL CRYSTALAMMLBoundary Conditions for GB Slidingq Construct symmetric tilt boundaries(STDB)by rotating a single crystal(reflection)q Periodic boundary condition in X directionq Restrain few layers in lower crystalqApply body force on top crystal A
22、MMLAsmallportionofCSLgrainbounarybeforeAndafterapplicationoftangentialforce Curve in Shear directionShetC,LiH,ChandraN;InterfacemodelsforGBslidingandmigrationMATERSCIFORUM357-3:577-5852001AMMLAsmallportionofCSLgrainboundarybeforeAndafterapplicationofnormalforceCurve in Normal directionAMMLSummarycom
23、plete debonding occurs when the distance of separation reaches a value of 2 to 3 .For 9 bicrystal tangential work of separation along the grain boundary is of the order 3 and normal work of separation is of the order 2.6 .For 3-bicrystal,the work of separation ranges from 1.5 to 3.7 .Rose et al.(198
24、3)have reported that the adhesive energy(work of separation)for aluminum is of the order 0.5 and the separation distance 2 to 3 Measured energy to fracture copper bicrystal with random grain boundary is of the order 54 and for 11 copper bicrystal the energy to fracture is more than 8000 Resultsanddi
25、scussiononatomisticsimulationImplications The numerical value of the cohesive energy is very low when compared to the observed experimental results Atomistic simulation gives only surface energy ignoring the inelastic energies due to plasticity and other micro processes.It should also be noted that
26、the exper-imental value of fracture energy includes the plastic work in addition to work of separation (J.R Rice and J.S Wang,1989)AMMLMaterialNomenclatureparticle sizeAluminiumalloys2024-T35135149001.22024-T85125.480001.2TitaniumalloysT2180489702-4T681301300002-4SteelMediumCarbon54126362-4Highstren
27、gthalloys984161718Ni(300)maraging7625030Alumina4-834-24010SiCceramics6.10.11to1.28PolymersPMMA1.2-1.7220TableofsurfaceandfractureenergiesofstandardmaterialsAMMLEnergybalanceandeffectofplasticityintheboundingmaterialAMMLMotivationItisperceivedthatCZMrepresentsthephysicalseparationprocess.Asseenfromat
28、omistics,fractureprocesscomprisesmostlyofinelasticdissipativeenergies.Therearemanyinelasticdissipativeprocessspecifictoeachmaterialsystem;someoccurwithinFPZ,andsomeintheboundingmaterial.Howtheenergyflowtakesplaceundertheexternalloadingwithinthecohesivezoneandneighboringboundingmaterialnearthecrackti
29、p?Whatisthespatialdistributionofplasticenergy?Istherealinkbetweenmicromechanicsprocessesofthematerialandcurve.AMMLPlasticityvs.otherDissipationMechanismsqSinceboundingmaterialhasitsowninelasticconstitutiveequation,whatistheproportionofenergydissipationwithinthatdomainandfractureregiongivenbyCZM.qRol
30、eofplasticityintheboundingmaterialisclearlyunique;andcannotbeassignedtoCZM.AMMLAl2024-T3alloyTheinputenergyinthecohesivemodelarerelatedtotheinterfacialstressandcharacteristicdisplacementasTheinputenergyisequatedtomaterialparameterBasedonthemeasuredfracturevalueCohesivezoneparametersofaductilemateria
31、lAMMLE=72GPa,=0.33,StressstraincurveisgivenbywhereandfractureparameterMaterialmodelfortheboundingmaterialElasto-plasticmodelforAl2024-T3AMMLGeometryandboundary/loadingconditionsa=0.025m,b=0.1m,h=0.1mAMMLFiniteelementmesh28189nodes,24340planestrain4nodeelements,7300cohesiveelements(widthofelementalon
32、gthecrackplanismAMMLGlobalenergydistributionareconfinedtoboundingmaterialiscohesiveenergy,asumtotalofalldissipativeprocessconfinedtoFPZandcannotberecoveredduringelasticunloadingandreloading.qPurelyelasticanalysisTheconventionalfracturemechanicsusestheconceptofstrainenergyreleaserateUsingCZM,thisfrac
33、tureenergyisdissipatedandnoplasticdissipationoccurs,suchthatAMMLGlobalenergydistribution(continued)IssuesFractureenergyobtainedfromexperi-mentalresultsissumtotalofalldissipativeprocessesinthematerialforinitiatingandpropagatingfracture.Shouldthisenergybedissipatedentirelyincohesivezone?Shouldbespliti
34、ntotwoidentifiabledissipationprocesses?TwodissipativeprocessPlasticitywithinBoundingmaterialMicro-separationProcessinFPZqAnalysiswithelasto-plasticmaterialmodelwhererepresentsotherfactorsarisingfromtheshapeofthetraction-displacementrelationsImplicationsLeavesnoenergyforplasticworkintheboundingmateri
35、alInwhatratioitshouldbedivided?Divisionisnon-trivialsinceplasticdissipationdependsongeometry,loadingandotherparametersasAMMLWhatarethekeyCZMparametersthatgoverntheenergetics?qincohesivezonedictatesthestresslevelachievableintheboundingmaterial.qYieldintheboundingmaterialdependsonitsyieldstrengthandit
36、spostyield(hardeningcharacteristics.qThusplaysacrucialroleindeterminingplasticityintheboundingmaterial,shapeofthefractureprocesszoneandenergydistribution.(otherparameterslikeshapemayalsobeimportant)AMMLGlobalenergydistribution(continued)Variationofcohesiveenergyandplasticenergyforvariousratios(1)(2)
37、(3)(4)Recoverableelasticwork95to98%ofexternalworkPlasticdissipationdependsonElasticbehaviorplasticityoccurs.PlasticityincreaseswithAMMLRelationbetweenplasticworkandcohesivework(verysmallscaleplasticity),plasticenergy15%oftotaldissipation.Plasticityinducedattheinitialstagesofthecrackgrowthplasticityc
38、easesduringcrackpropagation.Verysmallerrorisinducedbyignoringplasticity.plasticworkincreasesconsiderably,100to200%asthatofcohesiveenergy.Forlargescaleplasticityproblemstheamountoftotaldissipation(plasticandcohesive)ismuchhigherthan8000Plasticdissipationverysensitivetoratiobeyond2till3Crackcannotprop
39、agatebeyondandcompletelyelasticbelowAMMLVariationofNormalTractionalongtheinterfaceThelengthofcohesivezoneisalsoaffectedbyratio.Thereisadirectcorrelationbetweentheshapeofthetraction-displacementcurveandthenormaltractiondistributionalongthecohesivezone.Forlowerratiosthetraction-separationcurveflattens
40、,thistendtoincreasetheoverallcohesivezonelength.AMMLLocal/spatialEnergyDistributionAsetofpatchofelements(eachhavingapp.50elements)wereselectedintheboundingmaterial.Thepatchesareapproximatelysquares(130).Theyarespacedequallyfromeachother.Adjoiningthesepatches,patchesofcohesiveelementsareconsideredtor
41、ecordthecohesiveenergies.AMMLVariationofCohesiveEnergyThevariationofCohesiveEnergyintheWakeandForwardregionasthecrackpropagates.ThenumbersindicatetheCohesiveElementPatchnumbersFallingJustBelowthebindingelementpatchesThecohesiveenergyinthepatchincreasesuptopointC(correspondingtoinFigure)afterwhichthe
42、cracktipispresumedtoadvance.Theenergyconsumedbythecohesiveelementsatthisstageisapproximately1/7ofthetotalcohesiveenergyforthepresentCZM.OncethepointCiscrossed,thepatchofelementsfallintothewakeregion.Therateofcohesivezoneenergyabsorptiondependsontheslopeofthecurveandtherateatwhichelasticunloadingandp
43、lasticdissipationtakesplaceintheadjoiningmaterial.Thecurvesflattensoutoncetheentirecohesiveenergyisdissipatedwithinagivenzone.AMMLVariationofElasticEnergyVariationofElasticEnergyinVariousPatchofElementsasaFunctionofCrackExtension.ThenumbersindicatePatchnumbersstartingfromInitialCrackTipConsiderablee
44、lasticenergyisbuiltuptillthepeakofcurveisreachedafterwhichthecracktipadvances.AfterpassingC,thecohesiveelementsnearthecracktipareseparatedandtheelementsinthispatchbecomesapartofthewake.Atthisstage,thevaluesofnormaltractionreducesfollowingthedownwardslopeofcurvefollowingwhichthestressinthepatchreduce
45、saccompaniedbyreductioninelasticstrainenergy.Thereductioninelasticstrainenergyisusedupindissipatingcohesiveenergytothosecohesiveelementsadjoiningthispatch.Theinitialcracktipisinherentlysharpleadingtohighlevelsofstressfieldsduetowhichhigherenergyforpatch1Cracktipbluntsforadvancingcracktipleadingtoalo
46、werlevelsofstress,resultinginreducedenergylevelinotherpatches.AMMLVariationofdissipatedplasticenergyinvariouspatchedasafunctionofcrackextension.Thenumberindicatepatchnumbersstartingfrominitialcracktip.VariationofPlasticWork()plasticenergyaccumulatesconsiderablyalongwithelasticenergy,whenthelocalstre
47、ssesboundingmaterialexceedstheyieldAfterreachingpeakpointConcurvetractionreducesandplasticdeformationceases.Accumulatedplasticworkisdissipativeinnature,itremainsconstantafterdebonding.AlltheenergytransferinthewakeregionoccursfromelasticstrainenergytothecohesivezoneTheaccumulatedplasticworkdecreasesu
48、ptopatch4fromthatof1asaconsequenceofreductionoftheinitialsharpnessofthecrack.Mechanicalworkisincreasedtopropagatethecrack,duringwhichthedoesnotincreaseresultinginincreasedplasticwork.Thatincreaseinplasticworkcausestheincreaseinthestoredworkinpatches4andbeyondAMMLVariationofPlasticWork()VariationofPl
49、asticworkandElasticworkinvariouspatchofelementsalongtheinterfaceforthecaseof.Thenumbersindicatestheenergyinvariouspatchofelementsstartingfromthecracktip.,thereisnoplasticdissipation.plasticworkisinducedonlyinthefirstpatchofelementNoplasticdissipationduringcrackgrowthplaceintheforwardregionInitialsha
50、rpcracktipprofileinduceshighlevelsofstressandhenceplasticityinboundingmaterial.Duringcrackpropagation,tipbluntsresultingreducedlevelofstressesleadingtoreducedelasticenergiesandnoplasticitycondition.AMMLContourplotofyieldlocusaroundthecohesivecracktipatthevariousstagesofcrackgrowth.AMMLSchematicofcra
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100