1、圆中的动态问题【方法点拨】 圆中的动态问题实际是圆的分类讨论问题,做这种题型重要的是如何将动点转化为固定的点,从而将题型变为分类讨论【典型例题】题型一:圆中的折叠问题例题一 (2012江西南昌12分)已知,纸片O的半径为2,如图1,沿弦AB折叠操作(1)折叠后的所在圆的圆心为O时,求OA的长度; 如图2,当折叠后的经过圆心为O时,求的长度; 如图3,当弦AB=2时,求圆心O到弦AB的距离;(2)在图1中,再将纸片O沿弦CD折叠操作如图4,当ABCD,折叠后的与所在圆外切于点P时,设点O到弦ABCD的距离之和为d,求d的值;如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的
2、中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论【答案】解:(1)折叠后的所在圆O与O是等圆,OA=OA=2。当经过圆O时,折叠后的所在圆O在O上,如图2所示,连接OAOAOB,OB,OO。OOA,OOB为等边三角形,AOB=AOO+BOO=60+60=120。的长度。如图3所示,连接OA,OB,OA=OB=AB=2,AOB为等边三角形。过点O作OEAB于点E,OE=OAsin60=。(2)如图4,当折叠后的与所在圆外切于点P时,过点O作EFAB交AB于点H、交于点E,交CD于点G、交于点F,即点E、H、P、O、G、F在直径EF上。ABCD,EF垂直平分AB和CD。根据垂径定
3、理及折叠,可知PH=PE,PG=PF。又EF=4,点O到ABCD的距离之和d为:d=PH+PG=PE+PF=(PE+PF)=2。如图5,当AB与CD不平行时,四边形是OMPN平行四边形。证明如下:设O,O为和所在圆的圆心,点O与点O关于AB对称,点O于点O关于CD对称,点M为的OO中点,点N为OO的中点。折叠后的与所在圆外切,连心线OO必过切点P。折叠后的与所在圆与O是等圆,OP=OP=2,PM=OO=ON,PN=OO=OM,四边形OMPN是平行四边形。【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。【
4、分析】(1)折叠后的所在圆O与O是等圆,可得OA的长度。如图2,过点O作OEAB交O于点E,连接OAOBAE、BE,可得OAE、OBE为等边三角形,从而得到的圆心角,再根据弧长公式计算即可。如图3,连接OAOB,过点O作OEAB于点E,可得AOB为等边三角形,根据三角函数的知识可求折叠后求所在圆的圆心O到弦AB的距离。(2)如图4,与所在圆外切于点P时,过点O作EFAB交于于点E,交于点F,根据垂径定理及折叠,可求点O到ABCD的距离之和。由三角形中位线定理,根据两组对边分别相等的四边形是平行四边形即可得证。 变式一 如图是一圆形纸片,AB是直径,BC是弦,将纸片沿弦BC折叠后,劣弧BC与AB
5、交于点D,得到ODCAB(1)若,求证: 必经过圆心O;(2)若AB8,2,求BC的长 变式二 如图,ABC内接于O,ADBC,OEBC,OE=BC(1)求BAC的度数;(2)将ACD沿AC折叠为ACF,将ABD沿AB折叠为ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长题型二:圆中的旋转问题例题二 (2011湖南常德,25.10分)已知ABC,分别以AC和BC为直径作半圆,P是AB的中点。(1)如图8,若ABC是等腰三角形,且AC=BC,在上分别取点E、F,使,则有结论.四边形是菱形。请给出结论的证明;(2)如图9,若(1)中ABC是任意
6、三角形,其它条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;(3)如图10,若PC是的切线,求证:(1)BC是O2直径,则O2是BC的中点又P是AB的中点,P O2是ABC的中位线P O2 AC又AC是O1直径P O2 O1CAC同理P O1 O2C BCAC BC P O2 O1CP O1 O2C 四边形是菱形(2)结论PO1EPO2F成立,结论不成立证明:在(1)中已证PO2AC,又O1EACPO2O1E 同理可得PO1O2FPO2是ABC的中位线 PO2AC PO2BACB同理P O1AACB PO2BP O1A AO1E BO2F P O1A+AO1E PO2B+BO2F即
7、P O1E F O2 P、 EO1PPO2F;(3)延长AC交O2于点D,连接BD BC是O2的直径,则D90, 又PC是O1的切线,则ACP90, ACPD 又PACBADAPCBAD又P是AB的中点ACCD在RtBCD中,在RtABD中,评析:要证一个四边形是菱形,可证它的四条边相等,也可证明它是有一组邻边相等的平行四边形或对角线互相垂直的平行四边形;要证两三角形全等,可通过SSS,SAS,ASA,或AAS来加以判断;当待证式中出现多个平方的形式时,应首先考虑勾股定理及等量代换变式一 阅读下列材料,然后解答问题。经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆。圆心是正四边形的对
8、称中心,这个正四边形叫作这个圆的内接正四边形。如图(十三),已知正四边形ABCD的外接圆O,O的面积为S,正四边形ABCD的面积为S,以圆心O为顶点作MON,使MON=90,将MON绕点O旋转,OM、ON分别与O相交于点E、F,分别与正四边形ABCD的边相交于点G、H。设OE、OF、及正四边形ABCD的边围成的图形(图中阴影部分)的面积为S(1)当OM经过点A时(如图),则S、S、S之间的关系为:S (用含S、S的代数式表示);(2)当OMAB时(如图),点G为垂足,则(1)中的结论仍然成立吗?请说明理由。(3)当MON旋转到任意位置时(如图,)则(1)中的结论仍然成立吗?请说明理由【答案】解
9、:(1)(2)成立。理由:连OB,可证图中的两个阴影部分的面积之和等于图的阴影部分的面积(3)成立。过点O分别作AB、BC的垂线交AB、BC于点P、Q,交圆于点X、Y,可证直角三角形OPG全等于直角三角形OQH,可说明两阴影部分面积之和等于图的阴影部分面积变式二 (2012杭州)如图,AE切O于点E,AT交O于点M,N,线段OE交AT于点C,OBAT于点B,已知EAT=30,AE=3,MN=2(1)求COB的度数;(2)求O的半径R;(3)点F在O上(是劣弧),且EF=5,把OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合在EF的同一侧,这样的三角形共有多少个?你能在其中找出
10、另一个顶点在O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与OBC的周长之比考点:切线的性质;含30度角的直角三角形;勾股定理;垂径定理;平移的性质;旋转的性质;相似三角形的判定与性质。专题:计算题。分析:(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与AT垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与A相等,由A的度数即可求出所求角的度数;(2)在直角三角形AEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到
11、B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30的值,利用锐角三角函数定义表示出OC,用OEOC=EC列出关于R的方程,求出方程的解得到半径R的值;(3)把OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合在EF的同一侧,这样的三角形共有6个,如图所示,每小图2个,顶点在圆上的三角形,延长EO与圆交于点D,连接DF,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由FDE为30,利用锐角三角函数定义求
12、出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比解答:解:(1)AE切O于点E,AECE,又OBAT,AEC=CBO=90,又BCO=ACE,AECOBC,又A=30,COB=A=30;(2)AE=3,A=30,在RtAEC中,tanA=tan30=,即EC=AEtan30=3,OBMN,B为MN的中点,又MN=2,MB=MN=,连接OM,在MOB中,OM=R,MB=,OB=,在COB中,BOC=30,cosBOC=cos30=,BO=OC,OC=OB=,又OC+EC=OM=R,R=+3,整理得:R2+18R115=0
13、,即(R+23)(R5)=0,解得:R=23(舍去)或R=5,则R=5;(3)在EF同一侧,COB经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO交圆O于点D,连接DF,如图所示,EF=5,直径ED=10,可得出FDE=30,FD=5,则CEFD=5+10+5=15+5,由(2)可得CCOB=3+,CEFD:CCOB=(15+5):(3+)=5:1点评:此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含30直角三角形的性质,平移及旋转的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键题型三:圆中的动点例题三
14、(2012江苏南京10分)如图,A、B为O上的两个定点,P是O上的动点(P不与A、B重合),我们称APB为O上关于A、B的滑动角。(1)已知APB是上关于点A、B的滑动角。 若AB为O的直径,则APB= 若O半径为1,AB=,求APB的度数(2)已知为外一点,以为圆心作一个圆与相交于A、B两点,APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索APB与MAN、ANB之间的数量关系。【答案】解:(1)900。如图,连接AB、OA、OB在AOB中,OA=OB=1AB=,OA2+OB2=AB2。AOB=90。当点P在优弧 AB 上时(如
15、图1),APB=AOB=45;当点P在劣弧 AB 上时(如图2),APB=(360AOB)=135。(2)根据点P在O1上的位置分为以下四种情况第一种情况:点P在O2外,且点A在点P与点M之间,点B在点P与点N之间,如图3,MAN=APB+ANB,APB=MAN-ANB。第二种情况:点P在O2外,且点A在点P与点M之间,点N在点P与点B之间,如图4,MAN=APB+ANP=APB+(180ANB),APB=MAN+ANB180。第三种情况:点P在O2外,且点M在点P与点A之间,点B在点P与点N之间,如图5,APB+ANB+MAN=180,APB=180MANANB。第四种情况:点P在O2内,如
16、图6,APB=MAN+ANB。【考点】圆周角定理,勾股定理逆定理,三角形内角和定理和外角性质。【分析】(1)根据直径所对的圆周角等于90即可得APB=900。根据勾股定理的逆定理可得AOB=90,再分点P在优弧上;点P在劣弧上两种情况讨论即可。(2)根据点P在O1上的位置分为四种情况得到APB与MAN、ANB之间的数量关系。变式一 如图12-1所示,在中,为的中点,动点在边上自由移动,动点在边上自由移动(1)点的移动过程中,是否能成为的等腰三角形?若能,请指出为等腰三角形时动点的位置若不能,请说明理由(2)当时,设,求与之间的函数解析式,写出的取值范围(3)在满足(2)中的条件时,若以为圆心的
17、圆与相切(如图12-2),试探究直线与的位置关系,并证明你的结论图12-1图12-2AEFOCBAEFOCB(图121)(图122)解:如图,(1)点移动的过程中,能成为的等腰三角形此时点的位置分别是:是的中点,与重合与重合,是的中点(2)在和中,又,(3)与相切,即又,点到和的距离相等与相切,点到的距离等于的半径与相切变式二 如图,在O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点(1)如图1,求证:PCDABC;(2)当点P运动到什么位置时,PCDABC?请在图2中画出PCD并说明理由;(3)如图3,当
18、点P运动到CPAB时,求BCD的度数【课后练习】1、(2012湘潭)如图,在O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点(1)如图1,求证:PCDABC;(2)当点P运动到什么位置时,PCDABC?请在图2中画出PCD并说明理由;(3)如图3,当点P运动到CPAB时,求BCD的度数考点:圆周角定理;全等三角形的性质;垂径定理;相似三角形的判定。专题:几何综合题。分析:(1)由AB是O的直径,根据直径对的圆周角是直角,即可得ACB=90,又由PDCD,可得D=ACB,又由在同圆或等圆中,同弧或等弧所对的圆
19、周角相等,即可得A=P,根据有两角对应相等的三角形相似,即可判定:PCDABC;(2)由PCDABC,可知当PC=AB时,PCDABC,利用相似比等于1的相似三角形全等即可求得;(3)由ACB=90,AC=AB,可求得ABC的度数,然后利用相似,即可得PCD的度数,又由垂径定理,求得=,然后利用圆周角定理求得ACP的度数,继而求得答案解答:(1)证明:AB是O的直径,ACB=90,PDCD,D=90,D=ACB,A与P是对的圆周角,A=P,PCDABC;(2)解:当PC是O的直径时,PCDABC,理由:AB,PC是O的半径,AB=PC,PCDABC,PCDABC;(3)解:ACB=90,AC=
20、AB,ABC=30,PCDABC,PCD=ABC=30,CPAB,AB是O的直径,=,ACP=ABC=30,BCD=ACACPPCD=903030=30点评:此题考查了圆周角定理、垂径定理、相似三角形的判定与性质、全等三角形的判定与性质以及直角三角形的性质等知识此题综合性较强,难度适中,注意数形结合思想的应用2、如图,已知射线DE与x轴和轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动设运动时间为t秒(1)请用含t的代数式分别表示出点C与点P的坐标
21、;(2)以点C为圆心、t个单位长度为半径的C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB 当C与射线DE有公共点时,求t的取值范围;ADCMBPEyxO 当PAB为等腰三角形时,求t的值3、如图,在直角梯形ABCD中,ADBC,ABC90,AB12cm,AD8cm,BC22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一个动点也随之停止运动设运动时间为t(s)PADOBCQ(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与O相切?9 / 9