资源描述
圆中的动态问题
【方法点拨】
圆中的动态问题实际是圆的分类讨论问题,做这种题型重要的是如何将动点转化为固定的点,从而将题型变为分类讨论
【典型例题】
题型一:圆中的折叠问题
例题一 (2012江西南昌12分)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;
②如图2,当折叠后的经过圆心为O时,求的长度;
③如图3,当弦AB=2时,求圆心O到弦AB的距离;
(2)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.
【答案】解:(1)①折叠后的所在圆O′与⊙O是等圆,∴O′A=OA=2。
②当经过圆O时,折叠后的所在圆O′在⊙O上,如图2所示,连接O′A.OA.O′B,OB,OO′。
∵△OO′A,△OO′B为等边三角形,∴∠AO′B=∠AO′O+∠BO′O=60°+60°=120°。
∴的长度。
③如图3所示,连接OA,OB,
∵OA=OB=AB=2,
∴△AOB为等边三角形。
过点O作OE⊥AB于点E,∴OE=OA•sin60°=。
(2)①如图4,当折叠后的与所在圆外切于点P时,
过点O作EF⊥AB交AB于点H、交于点E,交CD于点G、交于点F,即点E、H、P、O、G、F在直径EF上。
∵AB∥CD,∴EF垂直平分AB和CD。
根据垂径定理及折叠,可知PH=PE,PG=PF。
又∵EF=4,∴点O到AB.CD的距离之和d为:
d=PH+PG=PE+PF=(PE+PF)=2。
②如图5,当AB与CD不平行时,四边形是OMPN平行四边形。证明如下:
设O′,O″为和所在圆的圆心,
∵点O′与点O关于AB对称,点O″于点O关于CD对称,
∴点M为的OO′中点,点N为OO″的中点。
∵折叠后的与所在圆外切,
∴连心线O′O″必过切点P。
∵折叠后的与所在圆与⊙O是等圆,
∴O′P=O″P=2,∴PM=OO″=ON,PN=OO′=OM,
∴四边形OMPN是平行四边形。
【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。
【分析】(1)①折叠后的所在圆O′与⊙O是等圆,可得O′A的长度。
②如图2,过点O作OE⊥AB交⊙O于点E,连接OA.OB.AE、BE,可得△OAE、△OBE为等边三角形,从而得到的圆心角,再根据弧长公式计算即可。
③如图3,连接O′A.O′B,过点O′作O′E⊥AB于点E,可得△AO′B为等边三角形,根据三角函数的知识可求折叠后求所在圆的圆心O′到弦AB的距离。
(2)①如图4,与所在圆外切于点P时,过点O作EF⊥AB交于于点E,交于点F,根据垂径定理及折叠,可求点O到AB.CD的距离之和。
②由三角形中位线定理,根据两组对边分别相等的四边形是平行四边形即可得证。
变式一 如图是一圆形纸片,AB是直径,BC是弦,将纸片沿弦BC折叠后,劣弧BC与AB交于点D,得到.
O
D
C
A
B
(1)若=,求证: 必经过圆心O;
(2)若AB=8,=2,求BC的长.
变式二 如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC.
(1)求∠BAC的度数;
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;
(3)若BD=6,CD=4,求AD的长.
题型二:圆中的旋转问题
例题二 (2011湖南常德,25.10分)已知△ABC,分别以AC和BC为直径作半圆,P是AB的中点。
(1)如图8,若△ABC是等腰三角形,且AC=BC,在上分别取点E、F,使,则有结论①.②四边形是菱形。请给出结论②的证明;
(2)如图9,若(1)中△ABC是任意三角形,其它条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;
(3)如图10,若PC是⊙的切线,求证:
(1)∵BC是⊙O2直径,则O2是BC的中点又P是AB的中点.,∴P O2是△ABC的中位线∴P O2 =AC
又AC是⊙O1直径∴P O2= O1C=AC
同理P O1= O2C =BC
∵AC =BC ∴P O2= O1C=P O1= O2C ∴四边形是菱形
(2)结论①△PO1E≌△PO2F成立,结论②不成立
证明:在(1)中已证PO2=AC,又O1E=AC
∴PO2=O1E 同理可得PO1=O2F
∵PO2是△ABC的中位线 ∴PO2∥AC ∴∠PO2B=∠ACB
同理∠P O1A=∠ACB ∴∠PO2B=∠P O1A ∵∠AO1E =∠BO2F ∴∠P O1A+∠AO1E =∠PO2B+∠BO2F
即∠P O1E =∠F O2 P、 ∴△EO1P≌△PO2F;
(3)延长AC交⊙O2于点D,连接BD.
∵BC是⊙O2的直径,则∠D=90°,
又PC是⊙O1的切线,则∠ACP=90°,
∴∠ACP=∠D
又∠PAC=∠BAD
∴△APC∽△BAD
又P是AB的中点
∴
∴AC=CD
∴在Rt△BCD中,
在Rt△ABD中,
∴
∴
评析:要证一个四边形是菱形,可证它的四条边相等,也可证明它是有一组邻边相等的平行四边形或对角线互相垂直的平行四边形;要证两三角形全等,可通过SSS,SAS,ASA,或AAS来加以判断;当待证式中出现多个平方的形式时,应首先考虑勾股定理及等量代换.
变式一 阅读下列材料,然后解答问题。
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆。圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形。
如图(十三),已知正四边形ABCD的外接圆⊙O,⊙O的面积为S,正四边形ABCD的面积为S,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H。设OE、OF、及正四边形ABCD的边围成的图形(图中阴影部分)的面积为S
(1)当OM经过点A时(如图①),则S、S、S之间的关系为:S= (用含S、S的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由。
(3)当∠MON旋转到任意位置时(如图③,)则(1)中的结论仍然成立吗?请说明理由.
【答案】解:(1)
(2)成立。理由:连OB,可证图中的两个阴影部分的面积之和等于图①的阴影部分的面积
(3)成立。过点O分别作AB、BC的垂线交AB、BC于点P、Q,交圆于点X、Y,可证直角三角形OPG全等于直角三角形OQH,可说明两阴影部分面积之和等于图①的阴影部分面积.
变式二 (2012•杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、
旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的
同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在
⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形
与△OBC的周长之比.
考点:
切线的性质;含30度角的直角三角形;勾股定理;垂径定理;平移的性质;旋转的性质;相似三角形的判定与性质。
专题:
计算题。
分析:
(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与AT垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数;
(2)在直角三角形AEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值;
(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有6个,如图所示,每小图2个,顶点在圆上的三角形,延长EO与圆交于点D,连接DF,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比.
解答:
解:(1)∵AE切⊙O于点E,
∴AE⊥CE,又OB⊥AT,
∴∠AEC=∠CBO=90°,
又∠BCO=∠ACE,
∴△AEC∽△OBC,又∠A=30°,
∴∠COB=∠A=30°;
(2)∵AE=3,∠A=30°,
∴在Rt△AEC中,tanA=tan30°=,
即EC=AEtan30°=3,
∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,
连接OM,在△MOB中,OM=R,MB=,
∴OB==,
在△COB中,∠BOC=30°,
∵cos∠BOC=cos30°==,∴BO=OC,
∴OC=OB=,
又OC+EC=OM=R,∴R=+3,
整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,
解得:R=﹣23(舍去)或R=5,
则R=5;
(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,
如图,每小图2个,顶点在圆上的三角形,如图所示:
延长EO交圆O于点D,连接DF,如图所示,
∵EF=5,直径ED=10,可得出∠FDE=30°,
∴FD=5,
则C△EFD=5+10+5=15+5,
由(2)可得C△COB=3+,
∴C△EFD:C△COB=(15+5):(3+)=5:1.
点评:
此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含30°直角三角形的性质,平移及旋转的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.
题型三:圆中的动点
例题三 (2012江苏南京10分)如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB为⊙O上关于A、B的滑动角。
(1)已知∠APB是上关于点A、B的滑动角。
① 若AB为⊙O的直径,则∠APB=
② 若⊙O半径为1,AB=,求∠APB的度数
(2)已知为外一点,以为圆心作一个圆与相交于A、B两点,∠APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系。
【答案】解:(1)①900。
②如图,连接AB、OA、OB.
在△AOB中,∵OA=OB=1.AB=,∴OA2+OB2=AB2。
∴∠AOB=90°。
当点P在优弧 AB 上时(如图1),∠APB=∠AOB=45°;
当点P在劣弧 AB 上时(如图2),
∠APB=(360°-∠AOB)=135°。
(2)根据点P在⊙O1上的位置分为以下四种情况.
第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图3,
∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN-∠ANB。
第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图4,
∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),
∴∠APB=∠MAN+∠ANB-180°。
第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图5,
∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°-∠MAN-∠ANB。
第四种情况:点P在⊙O2内,如图6,
∠APB=∠MAN+∠ANB。
【考点】圆周角定理,勾股定理逆定理,三角形内角和定理和外角性质。
【分析】(1)①根据直径所对的圆周角等于90°即可得∠APB=900。
②根据勾股定理的逆定理可得∠AOB=90°,再分点P在优弧上;点P在劣弧上两种情况讨论即可。
(2)根据点P在⊙O1上的位置分为四种情况得到∠APB与∠MAN、∠ANB之间的数量关系。
变式一 如图12-1所示,在中,,,为的中点,动点在边上自由移动,动点在边上自由移动.
(1)点的移动过程中,是否能成为的等腰三角形?若能,请指出为等腰三角形时动点的位置.若不能,请说明理由.
(2)当时,设,,求与之间的函数解析式,写出的取值范围.
(3)在满足(2)中的条件时,若以为圆心的圆与相切(如图12-2),试探究直线与的位置关系,并证明你的结论.
图12-1
图12-2
A
E
F
O
C
B
A
E
F
O
C
B
(图12-1)
(图12-2)
解:如图,
(1)点移动的过程中,能成为的等腰三角形.此时点的位置分别是:
①是的中点,与重合.
②.③与重合,是的中点
(2)在和中,,,
.又,..
,,,.
(3)与相切.,..即.
又,..点到和的距离相等.
与相切,点到的距离等于的半径.与相切.
变式二 如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.
(1)如图1,求证:△PCD∽△ABC;
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
【课后练习】
1、(2012•湘潭)如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.
(1)如图1,求证:△PCD∽△ABC;
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
考点:
圆周角定理;全等三角形的性质;垂径定理;相似三角形的判定。
专题:
几何综合题。
分析:
(1)由AB是⊙O的直径,根据直径对的圆周角是直角,即可得∠ACB=90°,又由PD⊥CD,可得∠D=∠ACB,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠A=∠P,根据有两角对应相等的三角形相似,即可判定:△PCD∽△ABC;
(2)由△PCD∽△ABC,可知当PC=AB时,△PCD≌△ABC,利用相似比等于1的相似三角形全等即可求得;
(3)由∠ACB=90°,AC=AB,可求得∠ABC的度数,然后利用相似,即可得∠PCD的度数,又由垂径定理,求得=,然后利用圆周角定理求得∠ACP的度数,继而求得答案.
解答:
(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,
∵PD⊥CD,∴∠D=90°,∴∠D=∠ACB,
∵∠A与∠P是对的圆周角,∴∠A=∠P,∴△PCD∽△ABC;
(2)解:当PC是⊙O的直径时,△PCD≌△ABC,
理由:∵AB,PC是⊙O的半径,
∴AB=PC,
∵△PCD∽△ABC,
∴△PCD≌△ABC;
(3)解:∵∠ACB=90°,AC=AB,
∴∠ABC=30°,
∵△PCD∽△ABC,
∴∠PCD=∠ABC=30°,
∵CP⊥AB,AB是⊙O的直径,
∴=,
∴∠ACP=∠ABC=30°,
∴∠BCD=∠AC﹣∠ACP﹣∠PCD=90°﹣30°﹣30°=30°.
点评:
此题考查了圆周角定理、垂径定理、相似三角形的判定与性质、全等三角形的判定与性质以及直角三角形的性质等知识.此题综合性较强,难度适中,注意数形结合思想的应用.
2、如图,已知射线DE与x轴和轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.
(1)请用含t的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.
① 当⊙C与射线DE有公共点时,求t的取值范围;A
D
C
M
B
P
E
y
x
O
② 当△PAB为等腰三角形时,求t的值.
3、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90º,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一个动点也随之停止运动.设运动时间为t(s).
P
A
D
O
B
C
Q
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,PQ与⊙O相切?
9 / 9
展开阅读全文