收藏 分销(赏)

转向系统设计毕业设计论文.doc

上传人:可**** 文档编号:2589314 上传时间:2024-06-01 格式:DOC 页数:41 大小:1.33MB
下载 相关 举报
转向系统设计毕业设计论文.doc_第1页
第1页 / 共41页
转向系统设计毕业设计论文.doc_第2页
第2页 / 共41页
转向系统设计毕业设计论文.doc_第3页
第3页 / 共41页
转向系统设计毕业设计论文.doc_第4页
第4页 / 共41页
转向系统设计毕业设计论文.doc_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、 摘 要本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车

2、设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。关键词:转向系;机械型转向器 ;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice o

3、f mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based

4、 on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achiev

5、e the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretic

6、al experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength requirements, safe and reliable.Keywords: steering; mechanical type steering gear; gear rack; hydraulic power steering 绪论1转向系统概述汽车行驶过程中,经常需要改变行驶

7、方向,即所谓的转向,这就需要有一套能够按照司机意志使汽车转向的机构,它将司机转动方向盘的动作转变为车轮(通常是前轮)的偏转作。按转向力能源的不同,可将转向系分为机械转向系和动力转向系。机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构(方向盘)、转向器、转向传动机构三大部分组成。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动(严格讲是近似直线运动)的机构,是转向系的核心部件2。 动力转向系除具有以上三大部件外,其最主要的动力来源是转向助力装置。由于转向助力装置最常用的是一套液压系统,因此也就离不开泵、油管、阀、活塞和储油罐,它们分别相当于电路系统中的电池、导线、开关、电

8、机和地线的作用。通常,对转向系的主要要求是:(1)保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便;(2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑;(3)传给转向盘的反冲要尽可能的小;(4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员2国内外发展情况改革开放以来,我国汽车工业发展迅猛。作为汽车关键部件之一的转向系统也得到了相应的发展,基本已形成了专业化、系列化生产的局面。有资料显示,国外有很多国家的转向器厂,都已发展成大

9、规模生产的专业厂,年产超过百万台,垄断了转向器的生产,并且销售点遍布了全世界。由于汽车转向器属于汽车系统中的关键部件,它在汽车系统中占有重要位置,因而它的发展同时也反映了汽车工业的发展,它的规模和质量也成为了衡量汽车工业发展水平的重要标志之一。随着汽车高速化和超低扁平胎的通用化,过去采用循环球转向器和循环球变传动比转向器只能相对地解决转向轻便性和操纵灵便性的问题,要想从跟本上解决这两个问题只有安装动力转向器。因此,除了重型汽车和高档轿车早已安装动力转向器外,近年来在中型货车、豪华客车及中档轿车上都已经开始安装动力转向器,随着动力转向器的设计水平的提高、生产规模的扩大和市场的需要,其他的一些车型

10、也必须陆续安装动力转向器。液压助力型转向器的设计使汽车在低速行驶或车辆就位时,驾驶员只需用较小的操作力就能灵活进行转向;而在高速行驶时,则自动控制,使操作力逐渐增大,实现了稳定操纵。虽然这种转向器具有很多优点,在目前的技术水准下它仍然存在某些不足之处,例如助力较小等;因此,目前液压式动力转向器仍然占据着很大的市场份额,其性能也在不断地提高。对于液压助力型动力转向器的研究有着非常深远的意义. 因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧

11、凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。1. 汽车主要参数的选择1.1汽车主要尺寸的确定 汽车的主要尺寸参数包括轴距、轮距、总长、总宽、总高、前悬、后悬、接近角、离去角、最小离地间隙等,如图1-1所示。图1-1 汽车的主要参数尺寸1.1.1 轴距L轴距L的选择要考虑它对整车其他尺寸参数、质量参数和使用性能的影响。轴距短一些,汽车总长、质量、最小转弯半径和纵向通过半径就小一些。但轴距过短也会带来一系列问题,例如车厢长度不足或后悬过长;汽车行驶时其纵向角振动过大;汽车加速、制动或上坡时轴荷转移过大而导致其制动性和操纵稳定性变坏;万向节传动的夹角过大等。因

12、此,在选择轴距时应综合考虑对有关方面的影响。当然,在满足所设计汽车的车厢尺寸、轴荷分配、主要性能和整体布置等要求的前提下,将轴距设计得短一些为好。1.1.1.1普通车的轴距轿车的轴距与其类型、用途、总长有密切关系。微型及普通级轿车要求制造成本低,使用经济性好,机动灵活,因此汽车应轻而短,故轴距应取短一些;中高级轿车对乘坐舒适性、行驶乎顺性和操纵稳定性要求高,故轴距应设计得长一些。轿车的轴距约为总长的5460。轴距与总长之比越大,则车厢的纵向乘坐空间就愈大,这对改善汽车纵向角振动也有利。但若轴距与总长之比超过62,则会使发动机、行李箱和备胎的布置困难,外形的各部分比例也不协调。表1-1提供的数据

13、可供初选轴距时参考表1-1 各类汽车的轴距和轮距车型类别轴距L/mm轮距B/mm乘用车发动机排量V/LV1.020002200110013801.0V1.621002540115015001.6V2.525002860130015002.54.02900390015601620商用车客车城市客车4500500017402050长途客车5000650042货车汽车总质量1.817002900115013501.86.023003600130016506.014.0360055001700200014.045005600184020001.1.2 前轮距B1和后轮距B2改变汽车轮距B会影响车厢或驾

14、驶室内宽、汽车总宽、总质量、侧倾刚度、最小转弯直径等因素发生变化、增大轮距则车厢内宽随之增加,并导致汽车的比功率、转矩指标下降,机动性变坏。受汽车总宽不得超过2.5m限制,轮距不宜过大。但在选定的前轮距B1范围内,应能布置下发动机、车架、前悬架和前轮,并保证前轮有足够的转向空间,同时转向杆系与车架、车轮之间有足够的运动间隙。在确定后轮距B2时,应考虑两纵梁之间的宽度、悬架宽度和轮胎宽度以及它们之间应留有必要的间隙。各类汽车的轮距可参考表1-1提供的数据进行初选。1.1.3 外廓尺寸汽车的外廓尺寸包括其总长、总宽、总高。它应根据汽车的类型、用途、承载员、道路条件、结构选型与布置以及有关标准、法规

15、限制等因素来确定。在满足使用要求的前提下,应力求减小汽车的外廓尺寸,以减小汽车的质量,降低制造成本,提高汽车的动力性、经济性和机动性。GB15891989对汽车外廓尺寸界限作了规定。(附1)1.2 汽车质量参数的确定汽车的质量参数包括整车整备质量、载客量装载质量、质量系数、汽车总质量ma、轴荷分配等。1.2.1 整车整备质量整车整备质量是指车上带有全部装备(包括随车工具、备胎等),加满燃料、水、但没有装货和在人时的整车质量。整车整备质量对汽车的制造成本和燃油经济型有影响。整车整备质量在设计阶段需估算确定。在日常工作中,收集大量同类汽车各总成、部件和整车的有关质量数据,结合新车设计的特点、工艺水

16、平等初步估算各总成、部件的质量,再累计成整车整备质量。乘用车和商用客车的整备质量,也可按每人所占汽车整备质量的统计平均值估计,可参考表1-2表1-2乘用车和商用客车人均整备质量值2乘用车人均整备质量值商用客车人均整备质量值发动机排量V/LV1.00.150.16车辆总长La/m10.00.0960.1601.0V1.60.170.241.6V2.50.210.292.510.00.0650.130V4.00.290.341.2.2 汽车的载客量和装载质量(1)汽车的载客量 乘用车的载客量包括驾驶员在内不超过9座,又称之为M1类汽车,其他M2、M3类汽车的座位数、乘员数及汽车的最大设计总质量见表

17、1-3。(2)汽车的载质量me 汽车的载质量是指在硬质良好路面上行驶时所允许的额定载质量。汽车在碎石路面上行驶时,载质量约为好的行驶路面的7585。越野汽车的载质量是指越野汽车行驶时或在土路上行驶的额定在质量。商用货车载质量me的确定,首先应与企业商品规划符合,其次要考虑到汽车的用途和使用条件。原则上,货流大、运距长或矿用自卸车应采用大吨位货车以利降低运输成本,提高效率;对货源变化频繁、运距短的市内运输车,宜采用中、小吨位的货车比较经济。1.2.3质量系数质量系数是指汽车车载质量与整车整备质量的比值,即=。该系数反映了汽车的设计水平和工艺水平,值越大,说明该汽车的结构和制造工艺越先进。1.2.

18、4汽车总质量汽车总质量是指装备齐全,并按规定装满客、货时的整车质量。乘用车和商用客车的总质量由整备质量、乘员和驾驶员质量以及乘员的行李质量三部分构成。其中,乘员和驾驶员每人质量按65kg计,于是 (1-2)式中,n为包括驾驶员在内的载客数;为行李系数。1.2.5轴荷分配 汽车的轴荷分配是汽车的重要质量参数,它对汽车的牵引性、通过性、制动性、操纵件和稳定性等主要使用性能以及轮胎的使用寿命都有很大的影响。因此,在总体设计时应根据汽车的布置型式、使用条件及性能要求合理地选定其轴荷分配。汽车的布置型式对轴荷分配影响较大,对轿车而言,前置发动机前轮驱动的轿车满载时的前轴负荷最好在55以上,以保证爬坡时有

19、足够的附着力;前置发动机后轮驱动的轿车满载时的后轴负荷一般不大于52;后置发动机后轮驱动的轿车满载时后轴负荷最好不超过59,否则,会导致汽车具有过多转向特性而使操纵性变坏。1.3轮胎的选择 轮胎的尺寸和型号是进行汽车性能计算和绘制总布置图的重要原始数据之一,因此,在总体设计开始阶段就应选定,而选择的依据是车型、使用条件、轮胎的静负荷、轮胎的额定负荷以及汽车的行驶速度。当然还应考虑与动力传动系参数的匹配以及对整车尺寸参数(例如汽车的最小离地间隙、总高等)的影响轮胎所承受的最大静负荷与轮胎额定负荷之比,称为轮胎负荷系数。大多数汽车的轮胎负荷系数取为0.91.0,以免超载。轿车、轻型客车及轻型货车的

20、车速高、轮胎受动负荷大,故它们的轮胎负荷系数应接近下限。为了提高汽车的动力因数、降低汽车及其质心的高度、减小非簧载质量,对公路用车在其轮胎负荷系数以及汽车离地间隙允许的范围内应尽量选取尺寸较小的轮胎。采用高强度尼龙帘布轮胎可使轮胎的额定负荷大大提高,从而使轮胎直径尺寸也大为缩小。例如装载员4t的载货汽车在20世纪50年代多用的9.020轮胎早己被8.2520,7.5020至8.2516等更小尺寸的轮胎所取代。越野汽车为了提高在松软地面上的通过能力常采用胎面较宽、直径较大、具有越野花纹的超低压轮胎。山区使用的汽车制动频繁,制动鼓与轮辋之间的间隙应大一些,以便散热,故应采用轮辋尺寸较大的轮胎。轿车

21、都采用直径较小、面形状扁平的宽轮辋低压轮胎,以便降低质心高度,改善行驶平顺性、横向稳定性、轮胎的附着性能并保证有足够的承载能力。2. 转向系设计概述2.1对转向系的要求 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。2)汽车转向行驶时,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。3)汽车在任何行驶状态下,转向轮都不得产生自振,转向盘没有摆动。4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。6)操纵轻便。7

22、) 转向轮碰撞到占该物以后,传给转向盘的反冲力要尽可能小。8) 转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。9) 在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。10) 进行运动校核,保证转向轮与转向盘转动方向一致。2.2转向操纵机构转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。

23、采用动力转向时,还应有转向动力系统。图2-1转向操纵机构1-转向万向节;2-转向传动轴;3-转向管柱;4-转向轴;5-转向盘1-steering universal shaft; 2-steering propeller ; 3-steering column ; 4-steering axis; 5-steering wheel2.3转向传动机构转向传动机构包括转向臂、转向纵拉杆、转向节臂、转向梯形臂以及转向横拉杆等。(见图2-2)转向传动机构用于把转向器输出的力和运动传给左、右转向节并使左、右转向轮按一定关系进行偏转。图2-2 转向传动机构Fig 2-2 the transmission

24、system of steering1-转向摇臂;2-转向纵拉杆;3-转向节臂;4-转向梯形臂;5-转向横拉杆2.4转向器机械转向器是将司机对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动),并按一定的角转动比和力转动比进行传递的机构。机械转向器与动力系统相结合,构成动力转向系统。高级轿车和重型载货汽车为了使转向轻便,多采用这种动力转向系统。采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。为了避免汽车在撞车时司机受到的转向盘的伤害,除了在转向盘中间可安装安全气囊外,还可在转向系中设置防伤装置。为了缓和来自路面的冲击、衰减

25、转向轮的摆振和转向机构的震动,有的还装有转向减振器。多数两轴及三轴汽车仅用前轮转向;为了提高操纵稳定性和机动性,某些现代轿车采用全四轮转向;多轴汽车根据对机动性的要求,有时要增加转向轮的数目,制止采用全轮转向 。2.5转角及最小转弯半径汽车的机动性,常用最小转弯半径来衡量,但汽车的高机动性则应由两个条件保证。即首先应使左、右转向轮处于最大转角时前外轮的转弯值在汽车轴距的22.5倍范围内;其次,应这样选择转向系的角传动比。两轴汽车在转向时,若不考虑轮胎的侧向偏离,则为了满足上述对转向系的第(2)条要求,其内、外转向轮理想的转角关系如图2-3所示,由下式决定: (2-1)式中:外转向轮转角; 内转

26、向轮转角; K两转向主销中心线与地面交点间的距离; L轴距内、外转向轮转角的合理匹配是由转向梯形来保证。图2-3 理想的内、外转向轮转角间的关系汽车的最小转弯半径与其内、外转向轮在最大转角与、轴距L、主销距K及转向轮的转臂a等尺寸有关。在转向过程中除内、外转向轮的转角外,其他参数是不变的。最小转弯半径是指汽车在转向轮处于最大转角的条件下以低速转弯时前外轮与地面接触点的轨迹构成圆周的半径。可按下式计算: (2-2)通常为3540,为了减小值,值有时可达到45操纵轻便型的要求是通过合理地选择转向系的角传动比、力传动比和传动效率来达到。对转向后转向盘或转向轮能自动回正的要求和对汽车直线行驶稳动性的要

27、求则主要是通过合理的选择主销后倾角和内倾角,消除转向器传动间隙以及选用可逆式转向器来达到。但要使传递到转向盘上的反向冲击小,则转向器的逆效率有不宜太高。至于对转向系的最后两条要求则主要是通过合理地选择结构以及结构布置来解决。转向器及其纵拉杆与紧固件的称重,约为中级以及上轿车、载货汽车底盘干重的1.0%1.4%;小排量以及下轿车干重的1.5%2.0%。转向器的结构型式队汽车的自身质量影响较小。3.转向系的主要性能参数3.1转向系的效率功率从转向轴输入,经转向摇臂轴输出所求得的效率称为转向器的正效率,用符号表示,;反之称为逆效率,用符号表示。 正效率计算公式: (3-1) 逆效率计算公式: (3-

28、2) 式中, 为作用在转向轴上的功率;为转向器中的磨擦功率;为作用在转向摇臂轴上的功率。 正效率高,转向轻便;转向器应具有一定逆效率,以保证转向轮和转向盘的自动返回能力。但为了减小传至转向盘上的路面冲击力,防止打手,又要求此逆效率尽可能低。 影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 3.1.1转向器的正效率 影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 (1)转向器类型、结构特点与效率 在四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。同一类型转向器,因结构不同效率也

29、不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承。选用滚针轴承时,除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种轴向器的效率+仅有54%。另外两种结构的转向器效率分别为70%和75%。 转向摇臂轴的轴承采用滚针轴承比采用滑动轴承可使正或逆效率提高约10%。 (2)转向器的结构参数与效率 如果忽略轴承和其经地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆类转向器,其效率可用下式计算 (3-3) 式中,a0为蜗杆(或螺杆)的螺线导程角;为摩擦角,=arctanf;f为磨擦因数。3.1.2转向器的逆效率根据逆效率不同,转向器有可逆式

30、、极限可逆式和不可逆式之分。 路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向轮和转向盘自动回正,既可以减轻驾驶员的疲劳,又可以提高行驶安全性。但是,在不平路面上行驶时,传至转向盘上的车轮冲击力,易使驾驶员疲劳,影响安全行驾驶。属于可逆式的转向器有齿轮齿条式和循环球式转向器。 不可逆式和极限可逆式转向器不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力转向传动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉,因此,现代汽车不采用这种转向器。极限可逆式转向器介于可逆式与不可逆式转向器两

31、者之间。在车轮受到冲击力作用时,此力只有较小一部分传至转向盘。如果忽略轴承和其它地方的磨擦损失,只考虑啮合副的磨擦损失,则逆效率可用下式计算 (3-4)式(3-3)和式(3-4)表明:增加导程角,正、逆效率均增大。受增大的影响,不宜取得过大。当导程角小于或等于磨擦角时,逆效率为负值或者为零,此时表明该转向器是不可逆式转向器。为此,导程角必须大于磨擦角。3.2传动比变化特性3.2.1转向系传动比 转向系的传动比包括转向系的角传动比和转向系的力传动比。转向系的力传动比: (3-5) 转向系的角传动比: (3-6) 转向系的角传动比由转向器角传动比和转向传动机构角传动比组成,即 (3-7)转向器的角

32、传动比: (3-8) 转向传动机构的角传动比: (3-9) 3.2.2力传动比与转向系角传动比的关系 转向阻力与转向阻力矩的关系式: (3-10)作用在转向盘上的手力与作用在转向盘上的力矩的关系式: (3-11) 将式(3-10)、式(3-11)代入 后得到 (3-12) 如果忽略磨擦损失,根据能量守恒原理,2Mr/Mh可用下式表示 (3-13)将式(3-10)代入式(3-11)后得到 (3-14)当a和Dsw不变时,力传动比越大,虽然转向越轻,但也越大,表明转向不灵敏。3.2.3转向器角传动比的选择转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的主要因素是转向轴负荷

33、大小和对汽车机动能力的要求。 若转向轴负荷小或采用动力转向的汽车,不存在转向沉重问题,应取较小的转向器角传动比,以提高汽车的机动能力。若转向轴负荷大,汽车低速急转弯时的操纵轻便性问题突出,应选用大些的转向器角传动比。汽车以较高车速转向行驶时,要求转向轮反应灵敏,转向器角传动比应当小些。汽车高速直线行驶时,转向盘在中间位置的转向器角传动比不宜过小。否则转向过分敏感,使驾驶员精确控制转向轮的运动有困难。转向器角传动比变化曲线应选用大致呈中间小两端大些的下凹形曲线,如图3-1所示。图3-1转向器角传动比变化特性曲线3.3转向器传动副的传动间隙t传动间隙是指各种转向器中传动副之间的间隙。该间隙随转向盘

34、转角的大小不同而改变,并把这种变化关系称为转向器传动副传动间隙特性(图3-2)。研究该特性的意义在于它与直线行驶的稳定性和转向器的使用寿命有关。传动副的传动间隙在转向盘处于中间及其附近位置时要极小,最好无间隙。若转向器传动副存在传动间隙,一旦转向轮受到侧向力作用,车轮将偏离原行驶位置,使汽车失去稳定。传动副在中间及其附近位置因使用频繁,磨损速度要比两端快。在中间附近位置因磨损造成的间隙过大时,必须经调整消除该处间隙。为此,传动副传动间隙特性应当设计成图3-2所示的逐渐加大的形状。图3-2 转向器传动副传动间隙特性转向器传动副传动间隙特性 图中曲线1表明转向器在磨损前的间隙变化特性;曲线2表明使

35、用并磨损后的间隙变化特性,并且在中间位置处已出现较大间隙;曲线3表明调整后并消除中间位置处间隙的转向器传动间隙变化特性。 3.4转向盘的总转动圈数转向盘从一个极端位置转到另一个极端位置时所转过的圈数称为转向盘的总转动圈数。它与转向轮的最大转角及转向系的角传动比有关,并影响转向的操纵轻便性和灵敏性。轿车转向盘的总转动阁数较少,一般约在3.6圈以内;货车一般不宜超过6圈。4. 机械式转向器方案分析及设计4.1齿轮齿条式转向器齿轮齿条式转向器由与转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。与其他形式的转向器比较,齿轮齿条式转向器最主要的优点是:结构简单、紧凑;壳体采用铝合金或镁合金压

36、铸而成,转向器的质量比较小;传动效率高达90%;齿轮与齿条之间因磨损出现间隙以后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧。能自动消除齿间间隙,这不仅可以提高转向系统的刚度。还可以防止工作时产生冲击和噪声;转向器占用的体积小;没有转向摇臂和直拉杆,所以转向轮转角可以增大;制造成本低。齿轮齿条式转向器的主要缺点是:因逆效率高,汽车在不平路面上行驶时,发生在转向轮与路面之间冲击力的大部分能传至转向盘,称之为反冲。反冲现象会使驾驶员精神紧张,并难以准确控制汽车行驶方向,转向盘突然转动又会造成打手,同时对驾驶员造成伤害。根据输入齿轮位置和输出特点不同,齿轮齿条式转向起有四种形式:中间输

37、入,两端输出(a);侧面输入,两端输出(b);侧面输入,中间输出(c);侧面输入,一端输出(d)。 图4-1 齿轮齿条式转向起有四种形式采用侧面输入,中间输出方案时,与齿条连的左,右拉杆延伸到接近汽车纵向对称平面附近。由于拉杆长度增加,车轮上、下跳动时拉杆摆角减小,有利于减少车轮上、下跳动时转向系与悬架系的运动干涉。拉杆与齿条用螺栓固定连接,因此,两拉杆那与齿条同时向左或右移动,为此在转向器壳体上开有轴向的长槽,从而降低了它的强度。采用两端输出方案时,由于转向拉杆长度受到限制,容易与悬架系统导向机构产生运动干涉。侧面输入,一端输出的齿轮齿条式转向器,常用在平头货车上。容易齿轮齿条式转向器采用直

38、齿圆柱齿轮与直齿齿条啮合,则运转平稳降低,冲击大,工作噪声增加。此外,齿轮轴线与齿条轴线之间的夹角只能是直角,为此因与总体布置不适应而遭淘汰。采用斜齿圆柱齿轮与斜齿齿条啮合的齿轮齿条式转向器,重合度增加,运转平稳,冲击与工作噪声均下降,而且齿轮轴线与齿条轴线之间的夹角易于满足总体设计的要求。因为斜齿工作时有轴向力作用,所以转向器应该采用推力轴承,使轴承寿命降低,还有斜齿轮的滑磨比较大是它的缺点。齿条断面形状有圆形、V形和Y形三种。圆形断面齿条的制作工艺比较简单。V形和Y形断面齿条与圆形断面比较,消耗的材料少,约节省20%,故质量小;位于齿下面的两斜面与齿条托座接触,可用来防止齿条绕轴线转动;Y

39、形断面齿条的齿宽可以做得宽些,因而强度得到增加。在齿条与托座之间通常装有用减磨材料(如聚四氟乙烯)做的垫片,以减少滑动摩擦。当车轮跳动、转向或转向器工作时,如在齿条上作用有能使齿条旋转的力矩时,应选用V形和Y形断面齿条,用来防止因齿条旋转而破坏齿轮、齿条的齿不能正确啮合的情况出现。为了防止齿条旋转,也有在转向器壳体上设计导向槽的,槽内嵌装导向块,并将拉杆、导向块与齿条固定在一起。齿条移动时导向块在导向槽内随之移动,齿条旋转时导向块可防止齿条旋转。要求这种结构的导向块与导向槽之间的配合要适当。配合过紧会为转向和转向轮回正带来困难,配合过松齿条仍能旋转,并伴有敲击噪声。根据齿轮齿条式转向器和转向梯

40、形相对前轴位置的不同,齿轮齿条式转向器在汽车上有四种布置:形式转向器位于前轴后方,后置梯形(a);转向器位于前轴后方,前置梯形(b);转向器位于前轴前方,后置梯形(c);转向器位于前轴前方,前置梯形(d)。 图4-2 齿轮齿条式转向器在汽车上有四种布置齿轮齿条式转向器广泛应用于乘用车上。车载质量不大,前轮采用独立悬架的货车和客车有些也用齿轮齿条式转向器。4.2其他转向器有循环球式转向器,蜗杆滚轮式转向器,蜗杆指销式转向器等。循环球式转向器的主要缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。循环球式转向器主要用于商用车上。蜗杆滚轮式转向器的主要缺点是:正效率低;工作齿面磨损以后,调整啮合

41、间隙比较困难;转向器的传动比不能变化。固定销蜗杆指销式转向器的结构简单、制造容易;但是因销子不能自转,销子的工作部位基本保持不变,所以磨损快、工作效率低。旋转销式转向器的效率高、磨损慢,但结构复杂。所以我的设计选用齿轮齿条式转向器为动力转向装置。4.3齿轮齿条式转向器布置和结构形式的选择 图4-3 采用如图所示的布置形式。 图4-4 如图所示的侧面输入两端输出的结构形式。4.4数据的确定根据以上的论述,本次设计初选数据如下:轮距1440mm轴距2750mm满载轴荷分配:前/后877/1643(kg)总质量1255(kg)轮胎175/60R14(附2)主销偏移距a 50mm轮胎压力p/MPa0.

42、45方向盘直径307mm最小转弯半径6.9m转向梯形臂200mm 表1 初选数据参考BJ121型轻型载货汽车底盘架构和上海通用别克赛欧汽车转向操作机构4. 5设计计算过程4.5.1 转向轮侧偏角计算 (4-1) (4-2)4.5.2转向器参数选取齿轮齿条转向器的齿轮多采用斜齿轮,齿轮模数在之间,主动小齿轮齿数在之间,压力角取,螺旋角在之间。故取小齿轮,右旋,压力角,精度等级8级。 转向节原地转向阻力矩: (4-3) 方向盘转动圈数: (4-4) 角传动比: (4-5) 方向盘上的手力: (4-6) 作用在转向盘上的操纵载荷:对轿车该力不应超过150200N,对货车不应超过500N。所以符合设计要求 (4-7) 力传动比: (4-8) 取齿宽系数, (4-9) 齿条宽度圆整取,则取齿轮齿宽 4.5.3选择齿轮齿条材料小齿轮:齿轮通常选用国内常用、性能优良的20CrMnTi合金钢,热处理采用表面渗碳淬火工艺,齿面硬度为HRc5863。而齿条选用与20CrMnTi具有较好匹配性的40Cr作为啮合副,齿条热处理采用高频淬火工艺,表面硬度HRc5056。 4.5.4强度校核(1)、校核齿轮接触疲劳强度选取参数,按ME级质量要求取值 , ; , , 故以 计算 (4-10)查得: , ,

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服