收藏 分销(赏)

数论的方法和技巧---05整数的p进位制及其应用.doc

上传人:a199****6536 文档编号:2575267 上传时间:2024-06-01 格式:DOC 页数:14 大小:1.22MB
下载 相关 举报
数论的方法和技巧---05整数的p进位制及其应用.doc_第1页
第1页 / 共14页
数论的方法和技巧---05整数的p进位制及其应用.doc_第2页
第2页 / 共14页
数论的方法和技巧---05整数的p进位制及其应用.doc_第3页
第3页 / 共14页
数论的方法和技巧---05整数的p进位制及其应用.doc_第4页
第4页 / 共14页
数论的方法和技巧---05整数的p进位制及其应用.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、(完整版)数论的方法和技巧 05整数的p进位制及其应用整数的p进位制及其应用基础知识给定一个m位的正整数A,其各位上的数字分别记为,则此数可以简记为:(其中)。由于我们所研究的整数通常是十进制的,因此A可以表示成10的次多项式,即,其中且,像这种10的多项式表示的数常常简记为。在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字.为了具备一般性,我们给出正整数A的p进制表示:,其中且。而仍然为十进制数字,简记为。典例分析例1(2007年中国数学奥林匹克协作体竞赛试题)假定正整数N的8进制表示为,那么下面四个判

2、断中,正确的是( )A、N能被7整除而不能被9整除 B、N能被9整除而不能被7整除C、N不能被7整除也不能被9整除 D、N既能被7整除也能被9整除答 D 由于,所以即N能被7整除N的8进制表示下各位数字之和能被7整除。类似的,N能被9整除N的8进制表示下奇数位数字之和与偶数位数字之和的差能被9整除例2 一个正整数,如果用7进制表示为,如果用5进制表示为,请用10进制表示这个数。解:由题意知:0a,c4,0b4,设这个正整数为n,则na72b7c, n=c52b5a 49a7bc25c5ba 48a2b24c0, b12(c2a) 12b,又0b4b0, c2a 当a1,c2时,n51 当a2,

3、c4时,n102例3(第4届美国数学邀请赛试题)递增数列1,3,4,9,10,12,13,是由一些正整数组成,它们或是3的幂,或是若个不同的3的幂之和,求该数列的第100项。解:将已知数列写成3的方幂形式:易发现其项数恰好是自然数列对应形式的二进制表示:即由于100所以原数列的第100项为。例4(1987年加拿大数学竞赛试题)1987可以在b进制中写成三位数,如果,试确定所有可能的和。解:易知,从而,即,由知.由知故;又因为有12个正约数,分别为1,2,3,6,9,18,109,218,327,654,981,1962,所以,从而。又由知例5(第3届加拿大数学竞赛试题)设是五位数(第一个数码不

4、是零),是由取消它的中间一个数码后所成的四位数,试确定一切使得是整数.解:设,其中且;而是整数,可证,即即,这显然是成立的;又可证,即即,这显然也是正确的。于是,即,又因为是整数,从而;于是,即即,而但3102知为正整数)从而,显然,因而推得其中。例6。 (1999年,保加利亚数学奥林匹克试题) 求所有的自然数n的个救,4n 1023使得n在二进制表示下,没有连续的三个数码相同例7. (l995年南斯拉夫数学奥林匹克试题)设n是正整数,n的二进制表示中恰有1995个l,求证:2n-1995整除n! 例8. (1982年英国数学奥林匹克试题)设自然数n为17的倍数,且在二进制写法中恰有三个数码为

5、1。证明n的二进制写法中至少有六个数码为0,且若恰有7个数码为0,则n是偶数。 例9。 (第12届IM O试题)设a,b,n均大于1在a进制中,在b进制中,其中 证明:当且仅当ab时,例10已知利用的砝码可以使重量是连续自然数的63个重物平衡,求这组砝码例11。(2005年中国奥林匹克协作体夏令营试题)如果一个正整数在三进制下表示的各数字之和可以被3整除,那么我们称为“好的”,则前2005个“好的”正整数之和是多少?解:首先考虑“好的”非负整数,考察如下两个引理:引理1。在3个连续非负整数(是非负整数)中,有且仅有1个是“好的”。证明:在这三个非负整数的三进制表示中,0,1,2各在最后一位出现

6、一次,其作各位数字相同,于是三个数各位数字之和是三个连续的正整数,其中有且仅有一个能被3整除(即“好的),引理1得证。引理2.在9个连续非负整数(是非负整数)中,有且仅有3个是“好的”。把这3个“好的非负整数化成三进制,0,1,2恰好在这三个三进制数的最后一位各出现一次。证明:由引理1不难得知在9个连续非负整数(是非负整数)中,有且仅有3个是“好的。另一方面,在这三个“好的”非负整数的三进制表示中,最高位与倒数第三位完全相同,倒数第二位分别取0,1,2。若它使它们成为“好的非负整数,则最后一位不相同,引理2得证。将所有“好的”非负整数按从小到大的顺序排成一列,设第2004个“好的”非负整数为,

7、根据引理1,得,即.设前个“好的”正整数之和为,由于前2003个“好的正整数之和等于前2004个“好的非负整数之和。因此;又因为和都是“好的”正整数。因此前2005年“好的”正整数之和是:。例12. 把所有3的方幂及互不相等的3的方幂的和排列成一个递增数列:10,12,13, 求这个数列的第100项例13. (第12届IM O试题)设a,b,n均大于1在a进制中,在b进制中,其中 证明:当且仅当ab时,课外练习题1。(2005年全国高中数学联赛试题) 记集合,将M中的元素按从大到小顺序排列,则第2005个数是A. B。 C。 D. 2。 证明:对任何进制数是完全平方数3. 设V,W,X,Y,Z

8、为5个五进制数码五进制下的三个三位(VYZ)5,(VYX)5,(VVW)5以公差为1依次递增问在十进制中,三位数(XYZ)5等于多少?4. 设其中是互不相等的非负整数,求的值5. 设1987可以写在b进制三位数且试确定所有可能的x,y,z及b值6。 求使能被7整除的所有正整数n7. 若二进制数满足则称n为“二进制回文数”,问在不超过1988的正整数中有多少个“二进制回文数”?8. 对每个正整数令 为n在k进制中的数字和,求证:对于小于20000的素数p,中至多有两个值为合数9。 设是正整数,定义数列和如下:若p是使得的数,求证:对所有使得是奇数的的和等于10. 设集合把A中各数按照从大到小的顺序排列,求第1997个数m为正整数,定义f(m)为m! 中因数2的个数(即满足2km!的最大整数k).证明有无穷多个正整数m,满足mf(m)=1989

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 职业教育

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服