资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.一元二次方程的一次项系数是( )
A. B. C. D.
2.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A. B. C. D.
3.己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是
A.相离 B.相切 C.相交 D.无法判断
4.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:
(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求
(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确 B.两人皆错误
C.甲正确,乙错误 D.甲错误,乙正确
5.下列图形中是中心对称图形的共有( )
A.1个 B.2个 C.3个 D.4个
6.关于抛物线的说法中,正确的是( )
A.开口向下 B.与轴的交点在轴的下方
C.与轴没有交点 D.随的增大而减小
7.不等式组的解集在数轴上表示为( )
A. B. C. D.
8.已知如图,直线,相交于点,且,添加一个条件后,仍不能判定的是( ).
A. B. C. D.
9.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为( )
A.﹣5 B.﹣1 C.﹣1.25 D.1
10.等腰三角形的一边长等于4,一边长等于9,则它的周长是( )
A.17 B.22 C.17或22 D.13
11.下列多边形一定相似的是( )
A.两个平行四边形 B.两个矩形
C.两个菱形 D.两个正方形
12.已知m,n是关于x的一元二次方程的两个解,若,则a的值为( )
A.﹣10 B.4 C.﹣4 D.10
二、填空题(每题4分,共24分)
13.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为_____度.
14.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有_____件合格品.
15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为,那么该矩形的面积为___.
16.如图,在中,,,,是上一点,,过点的直线将分成两部分,使其所分成的三角形与相似,若直线与另一边的交点为点,则__________.
17.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
18.的半径为4,圆心到直线的距离为2,则直线与的位置关系是______.
三、解答题(共78分)
19.(8分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.
(1)已知抛物线.
① 在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是 ;
② 如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;
(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.
20.(8分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.
(1)求y与x之间的函数关系式;
(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.
21.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
22.(10分)如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点
(1)若,求直线的函数表达式
(2)若点将线段分成的两部分,求点的坐标
(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标
23.(10分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.
(1)求证:为的切线;
(2)若的半径为1,当是直角三角形时,求的面积.
24.(10分)如图1,在中,是的直径,交于点,过点的直线交于点,交的延长线于点.
(1)求证:是的切线;
(2)若,试求的长;
(3)如图2,点是弧的中点,连结,交于点,若,求的值.
25.(12分)如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
26.在中,AB=6,BC=4,B为锐角且cosB.
(1)求∠B的度数.
(2)求的面积.
(3)求tanC.
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】根据一元二次方程的一般式判断即可.
【详解】解:该方程的一次项系数为.
故选:
【点睛】
本题考查的是一元二次方程的项的系数,不是一般式的先化成一般式再判断.
2、B
【详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
再由∠BDF+∠ADE=∠BDF+∠BFD=120º
可得∠ADE=∠BFD,又因∠A=∠B=60º,
根据两角对应相等的两三角形相似可得△AED∽△BDF
所以,
设AD=a,BD=2a,AB=BC=CA=3a,
再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
所以
整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,
即
故选B.
【点睛】
本题考查相似三角形的判定及性质.
3、A
【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d与r的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d>r时,直线与圆相离;②当d=r时,直线与圆相切;③当d<r时,直线与圆相交.
【详解】∵的解为x=4或x=-1,
∴r=4,
∵4<6,即r<d,
∴直线和⊙O的位置关系是相离.
故选A.
【点睛】
本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.
4、A
【分析】如图1,根据线段垂直平分线的性质得到,,则根据“”可判断,则可对甲进行判断;
如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,,则根据“”可判断,则可对乙进行判断.
【详解】解:如图1,垂直平分,
,,
而,
,所以甲正确;
如图2,,,
∴四边形为平行四边形,
,,
而,
,所以乙正确.
故选:A.
【点睛】
本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.
5、B
【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.
【详解】从左起第2、4个图形是中心对称图形,
故选B.
【点睛】
本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.
6、C
【分析】根据题意利用二次函数的性质,对选项逐一判断后即可得到答案.
【详解】解:A. ,开口向上,此选项错误;
B. 与轴的交点为(0,21),在轴的上方,此选项错误;
C. 与轴没有交点,此选项正确;
D. 开口向上,对称轴为x=6,时随的增大而减小,此选项错误.
故选:C.
【点睛】
本题考查二次函数的性质,解答本题的关键是明确题意,熟练掌握并利用二次函数的性质解答.
7、B
【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.
【详解】解:,
解不等式2x−1≤5,得:x≤3,
解不等式8−4x<0,得:x>2,
故不等式组的解集为:2<x≤3,
故选:B.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.
8、C
【分析】根据全等三角形判定,添加或或可根据SAS或ASA或AAS得到.
【详解】添加或或可根据SAS或ASA或AAS得到,添加属SSA,不能证.
故选:C
【点睛】
考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.
9、A
【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.
【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,
∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),
m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,
由上可得,m的值是﹣5,
故选:A.
【点睛】
本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.
10、B
【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】解:分两种情况:
当腰为4时,4+4<9,不能构成三角形;
当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=1.
故选B.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.
11、D
【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.
【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,
两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,
两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,
两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,
故选D.
【点睛】
本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.
12、C
【详解】解:∵m,n是关于x的一元二次方程的两个解,∴m+n=3,mn=a.
∵,即,
∴,解得:a=﹣1.
故选C.
二、填空题(每题4分,共24分)
13、120
【分析】利用扇形的面积公式:S=计算即可.
【详解】设扇形的圆心角为n°.
则有3π=,
解得n=120,
故答案为120
【点睛】
此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.
14、1.
【分析】用总数×抽检时任抽一件西服成品为合格品的概率即可得出答案.
【详解】200×0.9=1,
答:200件西服中大约有1件合格品
故答案为:1.
【点睛】
本题主要考查合格率问题,掌握合格产品数=总数×合格率是解题的关键.
15、240
【分析】由矩形的性质和三角函数求出AB,由勾股定理求出AD,即可得出矩形的面积.
【详解】解:如图所示:
∵四边形ABCD是矩形,
∴∠BAD=90°,AC=BD=26,
∵,
∴,
∴,
∴该矩形的面积为:;
故答案为:240.
【点睛】
本题考查了矩形的性质、勾股定理、三角函数;熟练掌握矩形的性质,由勾股定理求出AB和AD是解决问题的关键.
16、1,,
【分析】根据P的不同位置,分三种情况讨论,即可解答.
【详解】解:如图:当DP∥AB时
∴△DCP∽△BCA
∴即,解得DP=1
如图:当P在AB上,即DP∥AC
∴△DCP∽△BCA
∴即,解得DP=
如图,当∠CPD=∠B,且∠C=∠C时,
∴△DCP∽△ACB
∴即,解得DP=
故答案为1,,.
【点睛】
本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P点是解答本题的关键.
17、
【详解】解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).
故答案是:.
18、相交
【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.
【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,
∵4>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故答案为:相交.
【点睛】
本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.
三、解答题(共78分)
19、(1)①A,C.②;(2)或.
【分析】(1)①分别将A,B,C三个点的横坐标代入抛物线的解析式中,然后比较求出的函数值与各自点的纵坐标,最后依据上位点的定义判断即可得出答案;
②找到直线与抛物线的两个交点,即可确定点的横坐标的取值范围
(2)当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求,数形结合求出临界点时圆心的横坐标,即可得出答案.
【详解】解:(1)①当时,,所以A点是抛物线的上位点;
当时,,所以B点不是抛物线的上位点;
当时,,所以C点是抛物线的上位点;
故答案为,.
②∵点是直线的图上点,∴点在上.
又∵点是的上位点,
∴点在与的交点,之间运动.
∵
∴
∴点(,),(,).
∴.
(2)如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.
将沿直线翻折后的直线的解析式为
当时,,∴A(-3,0),OA=3
当时,∴C(0,3),OC=3
∴
∵
∴
∴
∵A(-3,0)
∴
同理可得
∴线段EF上同时存在图象的上位点,图上点和下位点,圆心的横坐标的取值范围为或.
【点睛】
本题主要考查二次函数与一次函数的综合,掌握上位点,图上点和下位点的概念是解题的关键.
20、(1);(1)横彩条的宽度为3cm,竖彩条的宽度为1cm.
【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为xcm,根据“三条彩条面积=横彩条面积+1条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的”,可列出关于x的一元二次方程,整理后求解即可.
【详解】(1)根据题意可知,横彩条的宽度为xcm,
∴y=10×x+1×11•x﹣1×x•x=﹣3x1+54x,
即y与x之间的函数关系式为y=﹣3x1+54x;
(1)根据题意,得:﹣3x1+54x=×10×11,
整理,得:x1﹣18x+31=0,
解得:x1=1,x1=16(舍),
∴x=3,
答:横彩条的宽度为3cm,竖彩条的宽度为1cm.
考点:根据实际问题列二次函数关系式;一元二次方程的应用.
21、反比例函数的解析式为,一次函数解析式为:;当或时,;当点C的坐标为或时,.
【分析】(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;
(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;
(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C在点D的左侧、点C在点D的右侧两种情况解答.
【详解】点在反比例函数的图象上,
,
反比例函数的解析式为,
点在反比例函数的图象上,
,
则点B的坐标为,
由题意得,,
解得,,
则一次函数解析式为:;
由函数图象可知,当或时,;
,,
,
由题意得,,
在中,,即,
解得,,
当点C在点D的左侧时,点C的坐标为,
当点C在点D的右侧时,点C的坐标为,
当点C的坐标为或时,.
【点睛】
本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.
22、(1);(2)或;(3),,,
【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;
(2)分和两种情况根据点A、点B在直线y=x+2上列式求解即可;
(3)分和两种情况,利用相似三角形的性质列式求解即可.
【详解】(1)如图①,设直线AB与x轴的交点为M.
∵∠OPA=45°,
∴OM=OP=2,即M(-2,0).
设直线AB的解析式为y=kx+b(k≠0),将M(-2,0),P(0,2)两点坐标代入,得
,
解得,.
故直线AB的解析式为y=x+2;
(2)①
设(a>0)
∵点A、点B在直线y=x+2上和抛物线y=x2的图象上,
∴,
∴,
∴
解得,,(舍去)
②
设(a>0)
∵点A、点B在直线y=x+2上和抛物线y=x2的图象上,
∴,
∴,
∴
解得:,(舍去)
综上或
(3),
,
①
此时,关于轴对称,为等腰直角三角形
②
此时满足,左侧还有也满足
,,,四点共圆,易得圆心为中点
设,
∵
且不与重合
,
为正三角形,
过作,则,
∵
∴
∴
解得,
∴
∵
∴
∴
解得,
∴
综上所述,满足条件的点M的坐标为:,,,.
【点睛】
本题考查了二次函数综合题.其中涉及到了待定系数法求一次函数解析式,二次函数图象上点的坐标特征,方程思想,难度比较大.另外,解答(2)、(3)题时,一定要分类讨论,做到不重不漏.
23、(1)详见解析;(2)或
【分析】(1)先证,再证,得到,即可得出结论;
(2)分当时和当时两种情况分别求解即可.
【详解】(1)∵,
∴,
∵,,
∴,
∵是直径,
∴,
∴,
∴,
∴,
∴,
∴是的切线.
(2)①当时,,是等边三角形,可得,
∵,
∴,,
∴.
②当时,易知,的边上的高,
∴.
【点睛】
此题是圆的综合题,主要考查了切线的性质和判定,等边三角形的判定和性质,求三角形的面积熟练掌握切线的判定与圆周角定理是解题的关键.
24、(1)证明见解析(2)(3)
【分析】(1)连接半径,根据已知条件结合圆的基本性质可推出,即,即可得证结论;
(2)设,根据已知条件列出关于的方程、解方程即可得到圆心角,再求得半径,然后利用弧长公式即可得解;
(3)由,设,然后根据已知条件利用圆的一些性质、勾股定理以及三角形的不同求法分别表示出、,再利用平行线的判定以及相似三角形的判定和性质即可求得结论.
【详解】解:(1) 连结,如图:
∵是的直径
∴
∴
∵
∴
∵
∴
∴
∵在圆上
∴是的切线.
(2)设
∵
∴
∴
∵在中,
∴
∴
∴
∵
∴
∴
连结,过作于点,如图:
∵点是的中点
∴
∴设
∴
∴
∴
∵在中,
∴
∵,
∴
∴
∴.
故答案是:(1)证明见解析(2)(3)
【点睛】
本题考查了圆的相关性质、切线的判定、等腰三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、直角三角形的相关性质、锐角三角函数、三角形的外角性质以及弧长的计算公式等,综合性较强,但难度不大属中档题型.
25、(1)(8,0),;(2)(6,1);(3)①,②的长为或.
【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,即可得到OE;
(2)如图,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由和,可得结论;
(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=,根据Q3(−4,6),Q2(6,1),可得t=4时,s=,利用待定系数法可得s关于t的函数表达式;
②分三种情况:
(i)当PQ∥OE时,根据,表示BH的长,根据AB=12,列方程可得t的值;
(ii)当PQ∥OF时,根据tan∠HPQ=tan∠CDN=,列方程为2t−2= (7−t),可得t的值.
(iii)由图形可知PQ不可能与EF平行.
【详解】解:(1)令,则,
∴,
∴为.
∵为,
在中,.
又∵为中点,∴.
(2)如图,作于点,则,
∴,
∴,
∴,
∴.
∵,
∴,
由勾股定理得,
∴,
∴.
∵,
∴,
∴为.
(3)①∵动点同时作匀速直线运动,
∴关于成一次函数关系,设,
将和代入得,解得,
∴.
②(ⅰ)当时,(如图),,
作轴于点,则.
∵,
又∵,
∴,
∴,
∴,
∴.
(ⅱ)当时(如图),过点作于点,过点作于点,由得.
∵,
∴,
∴,
∴.
∵,
∴,
∴,
∴.
(ⅲ)由图形可知不可能与平行.
综上所述,当与的一边平行时,的长为或.
【点睛】
此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.
26、(1)60°;(2) ;(3)
【解析】(1)直接利用三角函数值,即可求出∠B的度数;(2) 过A作AD⊥BC于D,根据cosB,可求出BD的值,利用勾股定理可求出AD的值,即可求得的面积;(3)利用正切概念即可求得tanC的值;
【详解】解:
(1)∵B为锐角且cosB,
∴∠B=60°;
(2)如图,过A作AD⊥BC于D,
在Rt中,cosB,
∵AB=6,
∴BD=3,
∴,
∴,
(3)∵BD=3,BC=4,
∴CD=1,
∴在Rt中,tanC.
【点睛】
本题考查了三角函数的定义及性质,掌握三角函数的性质是解题的关键.
展开阅读全文