资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.已知二次函数的图象经过点,当自变量的值为时,函数的值为( )
A. B. C. D.
2.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有
A.2个 B.3个 C.4个 D.5个
3.下列图形中是中心对称图形的有( )个.
A.1 B.2 C.3 D.4
4.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为( )
A. B. C. D.
5.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为( )
A. B. C. D.
6.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )
A.10米 B.15米 C.25米 D.30米
7.若二次函数的图象如图,与x轴的一个交点为(1,0),则下列各式中不成立的是( )
A. B. C. D.
8.如图,△ABC 中,点 D 为边 BC 的点,点 E、F 分别是边 AB、AC 上两点,且 EF∥BC,若 AE:EB=m,BD:DC=n,则( )
A.若 m>1,n>1,则 2S△AEF>S△ABD B.若 m>1,n<1,则 2S△AEF<S△ABD
C.若 m<1,n<1,则 2S△AEF<S△ABD D.若 m<1,n>1,则 2S△AEF<S△ABD
9.半径为6的圆上有一段长度为1.5的弧,则此弧所对的圆心角为( )
A. B. C. D.
10.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )
A.n B.n-1 C.()n-1 D.n
11.抛物线的顶点为,与轴交于点,则该抛物线的解析式为( )
A. B.
C. D.
12.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1 B.3 C.4 D.5
二、填空题(每题4分,共24分)
13.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为的拉面,则做出来的面条的长度为__________.
14.如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_.
15.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.
16.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.
17.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.
18.如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE=2:5,连接DE交AB于F,则=_____________
三、解答题(共78分)
19.(8分)如图,△ABC的坐标依次为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC绕原点O顺时针旋转180°得到△A1B1C1.
(1)画出△A1B1C1;
(2)求在此变换过程中,点A到达A1的路径长.
20.(8分)如图,已知三个顶点的坐标分别为,,
(1)请在网格中,画出线段关于原点对称的线段;
(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;
(3)若另有一点,连接,则 .
21.(8分)解方程:
(1)+2x-5=0;
(2) =.
22.(10分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.
(1)求反比例函数和一次函数的解析式;
(2)连接OB,求△AOB的面积.
23.(10分)(1)用配方法解方程:x2﹣4x+2=0;
(2)如图,在平面直角坐标系中,△ABC的顶点均在格点上,将△ABC绕原点O逆时针方向旋转90°得到△A1B1C1.请作出△A1B1C1,写出各顶点的坐标,并计算△A1B1C1的面积.
24.(10分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;
(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;
(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.
25.(12分)如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.
(1)求证:EF是⊙O的切线;
(2)若AD=1,求BC的长;
(3)在(2)的条件下,求图中阴影部分的面积.
26.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N,若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D、F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.
【详解】把代入,得,解得=
把=3,代入==-4
故选B.
【点睛】
本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.
2、D
【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.
∵对称轴x,∴<1.∴ab>1.故①正确.
②如图,当x=1时,y<1,即a+b+c<1.故②正确.
③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
④如图,当x=﹣1时,y>1,即a﹣b+c>1,
∵抛物线与y轴交于正半轴,∴c>1.
∵b<1,∴c﹣b>1.
∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
⑤如图,对称轴,则.故⑤正确.
综上所述,正确的结论是①②③④⑤,共5个.故选D.
3、B
【解析】∵正三角形是轴对称能图形;平行四边形是中心对称图形;正五边形是轴对称图形;正六边形既是中心对称图形又是轴对称图形,
∴中心对称图形的有2个.
故选B.
4、D
【分析】先证明△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方求解即可.
【详解】∵BC∥DE,
∴△ADE∽△ABC,
∵DE把△ABC分成的两部分面积相等,
∴△ADE:△ABC=1:2,
∴.
故选D.
【点睛】
本题主要考查了相似三角形的判定与性质,平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;相似三角形面积的比等于相似比的平方.
5、B
【分析】根据圆周角的性质即可求解.
【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,
同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,
故∠CPD=,
故选B.
【点睛】
此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.
6、B
【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.
【详解】解:如图,在Rt△ABC中,∵∠ABC=30°,
∴AB=2AC,
而CA=5米,
∴AB=10米,
∴AB+AC=15米.
所以这棵大树在折断前的高度为15米.
故选B.
【点睛】
本题主要利用定理--在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.
7、B
【分析】根据二次函数图象开口方向与坐标轴的交点坐标特点,利用排除法可解答.
【详解】解:∵抛物线与x轴有两个交点,
∴,故A正确,不符合题意;
∵函数图象开口向下,
∴a<0,
∵抛物线与y轴正半轴相交,
∴c>0,
∵抛物线对称轴在y轴的右侧,
∴>0,
∴b>0,
∴abc<0,故B错误,符合题意;
又∵图象与x轴的一个交点坐标是(1,0),
∴将点代入二次函数y=ax2+bx+c得a+b+c=0,故C正确,不符合题意,
∵当x=-1时,y=a-b+c,
由函数图象可知,y=a-b+c<0,故D正确,不符合题意,
故选:B.
【点睛】
本题考查二次函数图象上点的坐标特征,是基础题型,也是常考题型.
8、D
【分析】根据相似三角形的判定与性质,得出,,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案 .
【详解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,
∴△AEF∽△ABC,
∴,
∴,
∴,
∴
∴当m=1,n=1,即当E为AB中点,D为BC中点时,,
A.当m>1,n>1时,S△AEF与S△ABD同时增大,则或,即2
或2>,故A错误;
B.当m>1,n <1,S△AEF增大而S△ABD减小,则,即2,故B错误;
C.m<1,n<1,S△AEF与S△ABD同时减小,则或,即2或2<,故C错误;
D.m<1,n>1,S△AEF减小而S△ABD增大,则,即2<,故D正确 .
故选D .
【点睛】
本题主要考查了相似三角形的判定与性质, 熟练掌握相似三角形的性质是解答本题的关键 .
9、B
【分析】根据弧长公式,即可求解.
【详解】∵,
∴,解得:n=75,
故选B.
【点睛】
本题主要考查弧长公式,掌握是解题的关键.
10、B
【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解.
【详解】
如图作正方形边的垂线,
由ASA可知同正方形中两三角形全等,
利用割补法可知一个阴影部分面积等于正方形面积的 ,
即是,
n个这样的正方形重叠部分(阴影部分)的面积和为:.
故选:B.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.
11、A
【分析】设出抛物线顶点式,然后将点代入求解即可.
【详解】解:设抛物线解析式为,
将点代入得:,
解得:a=1,
故该抛物线的解析式为:,
故选:A.
【点睛】
本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
12、D
【解析】根据二次函数的图象与性质即可求出答案.
【详解】解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
二、填空题(每题4分,共24分)
13、1
【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案.
【详解】解:根据题意得:y= ,过(0.04,3200).
k=xy=0.04×3200=128,
∴y=(x>0),
当x=0.16时,
y= =1(cm),
故答案为:1.
【点睛】
此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
14、.
【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决.
【详解】联立得,
解得,或,
∴点的坐标为,点的坐标为,
∴,
作点关于轴的对称点,连接与轴的交于,则此时的周长最小,
点的坐标为,点的坐标为,
设直线的函数解析式为,
,得,
∴直线的函数解析式为,
当时,,
即点的坐标为,
将代入直线中,得,
∵直线与轴的夹角是,
∴点到直线的距离是:,
∴的面积是:,
故答案为.
【点睛】
本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.
15、80
【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.
【详解】解:∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圆周角定理得,∠BOD=2∠A=80°.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
16、
【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.
【详解】解:如图,∵∠ACB=90°,AC=BC=,
∴AB==,
∴S扇形ABD==,
又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.
故答案是:.
【点睛】
本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.
17、
【分析】根据题意算出正方形的面积和内切圆面积,再利用几何概率公式加以计算,即可得到所求概率.
【详解】解:∵正方形的边长为4,
∴正方形的面积S正方形=16,内切圆的半径r=2,
因此,内切圆的面积为S内切圆=πr2=4π,
可得米落入圆内的概率为:
故答案为:
【点睛】
本题考查几何概率、正多边形和圆,解答本题的关键是明确题意,属于中档题.
18、9:4
【分析】先证△ADF∽△BEF,可知 ,根据BE:CE=2:5和平行四边形的性质可得AD:BE的值,由此得解.
【详解】解:∵BE:CE=2:5,
∴BE:BC=2:3 ,即BC:BE=3:2 ,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD:BE=3:2,△ADF∽△BEF,
∴.
故答案为:9:4.
【点睛】
本题考查相似三角形的性质和判定,平行四边形的性质.熟记相似三角形的面积比等于相似比的平方是解决此题的关键.
三、解答题(共78分)
19、(1)画图见解析;(2)点A到达A1的路径长为π.
【分析】(1)根据旋转的定义分别作出点A,B,C绕原点旋转所得对应点,再首尾顺次连接即可得;
(2)点A到达A1的路径是以O为圆心,OA为半径的半圆,据此求解可得.
【详解】解:(1)如图所示,△A1B1C1即为所求.
(2)∵OA==,
∴点A到达A1的路径长为×2π×=π.
【点睛】
本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
20、(1)见解析;(2)见解析,;(3)1.
【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;
(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;
(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.
【详解】(1)如图所示,线段B1C1即为所求作的;
(2)如图所示,D(-1,-4);
(3)连接BP,则有BP2=32+12=10,
BC2=32+12=10,BC2=42+22=20,
BP2+BC2=PC2,
∴△BPC是等腰直角三角形,∠PBC=90°,
∴∠BCP=45°,
∴tan∠BCP=1,
故答案为1.
【点睛】
本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.
21、(1);(2);过程见详解.
【分析】(1)利用因式分解法解一元二次方程即可;
(2)利用直接开平方法求解即可.
【详解】解:(1)+2x-5=0
解得:;
(2) =
解得.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
22、(1)y=﹣,y=﹣x﹣1;(2)
【分析】(1)过点A作AE⊥x轴于点E,通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可,再由点B在反比例函数图象上可求出点B的坐标,由点A、B的坐标利用待定系数法求出直线AB的解析式;
(2)令一次函数解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.
【详解】解:(1)过点作轴于点,
则.
在中,,,
,
,
点的坐标为.
点在反比例函数的图象上,
,解得:.
反比例函数解析式为.
点在反比例函数的图象上,
,解得:,
点的坐标为.
将点、点代入中得:,
解得:,
一次函数解析式为.
(2)令一次函数中,则,
解得:,即点的坐标为.
.
【点睛】
本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,根据点的坐标利用待定系数法求出函数解析式是关键.
23、(1)x1=2+,x2=2﹣;(2)A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面积=×2×2=2.
【分析】(1)利用配方法得到(x﹣2)2=2,然后利用直接开平方法解方程;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1;然后写出△A1B1C1各顶点的坐标,利用三角形面积公式计算△A1B1C1的面积.
【详解】解:(1)移项,得x2﹣4x=﹣2,
配方,得x2﹣4x+4=﹣2+4,
即(x﹣2)2=2,
所以x﹣2=±
所以原方程的解为x1=2+,x2=2﹣;
(2)如图,△A1B1C1为所作;A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面积=×2×2=2.
【点睛】
本题主要考察作图-旋转变换、三角形的面积公式和解方程,解题关键是熟练掌握计算法则.
24、(1);(2)△BPC面积的最大值为 ;(3)D的坐标为(0,-1)或(0,-);(4)M(,0),N(0,)
【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;
(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;
(3)B、C、D为顶点的三角形与△ABC相似有两种情况,分别求解即可;
(4)作点E关于y轴的对称点E′(-2,9),作点F(2,9)关于x轴的对称点F′(3,-8),连接E′、F′分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解.
【详解】解:(1)把,分别代入得:
∴
∴抛物线的表达式为:.
(2)如图,过点P作PH⊥OB交BC于点H
令x=0,得y=5
∴C(0,5),而B(5,0)
∴设直线BC的表达式为:
∴
∴
∴
设,则
∴
∴
∴
∴△BPC面积的最大值为.
(3)如图,∵ C(0,5),B(5,0)
∴OC=OB,
∴∠OBC=∠OCB=45°
∴AB=6,BC=
要使△BCD与△ABC相似
则有或
①当时
∴
则
∴D(0,)
② 当时,
CD=AB=6,
∴D(0,-1)
即:D的坐标为(0,-1)或(0,-)
(4)∵
∵E为抛物线的顶点,
∴E(2,9)
如图,作点E关于y轴的对称点E'(﹣2,9),
∵F(3,a)在抛物线上,
∴F(3,8),
∴作点F关于x轴的对称点F'(3,-8),
则直线E' F'与x轴、y轴的交点即为点M、N
设直线E' F'的解析式为:
则
∴
∴直线E' F'的解析式为:
∴,0),N(0,).
【点睛】
本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.
25、(1)见解析;(2);(3)
【分析】(1)连接OC,由OB=OC,利用等边对等角得到∠BCO=∠B,由∠ACD=∠B,得到∠ACD+∠OCA=90°,即可得到EF为圆O的切线;
(2)证明Rt△ABC∽Rt△ACD,可求出AC=2,由勾股定理求出BC的长即可;
(3)求出∠B=30°,可得∠AOC=60°,在Rt△ACD中,求出CD,然后用梯形ADCO和扇形OAC的面积相减即可得出答案.
【详解】(1)证明:连接OC,
∵AB是⊙O直径,
∴∠ACB=90°,即∠BCO+∠OCA=90°,
∵OB=OC,
∴∠BCO=∠B,
∵∠ACD=∠B,
∴∠ACD+∠OCA=90°,
∵OC是⊙O的半径,
∴EF是⊙O的切线;
(2)解:在Rt△ABC和Rt△ACD中,
∵∠ACD=∠B,∠ACB=∠ADC,
∴Rt△ABC∽Rt△ACD,
∴,
∴AC2=AD•AB=1×4=4,
∴AC=2,
∴;
(3)解:∵在Rt△ABC中,AC=2,AB=4,
∴∠B=30°,
∴∠AOC=60°,
在Rt△ADC中,∠ACD=∠B=30°,AD=1,
∴CD===,
∴S阴影=S梯形ADCO﹣S扇形OAC=.
【点睛】
本题是圆的综合题,考查了切线的判定,圆周角定理,相似三角形的判定与性质,勾股定理以及扇形面积的计算,熟练掌握圆的基本性质是解本题的关键.
26、(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).
【解析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;
(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•xN﹣BG•xM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;
(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.
【详解】(1)由题意知,
解得:,
∴抛物线L的解析式为y=﹣x2+2x+1;
(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,
∵y=kx﹣k+4=k(x﹣1)+4,
∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),
∵y=﹣x2+2x+1=﹣(x﹣1)2+2,
∴点B(1,2),
则BG=2,
∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)-BG•(xM-1)=1,
∴xN﹣xM=1,
由得:x2+(k﹣2)x﹣k+3=0,
解得:x==,
则xN=、xM=,
由xN﹣xM=1得=1,
∴k=±3,
∵k<0,
∴k=﹣3;
(3)如图2,
设抛物线L1的解析式为y=﹣x2+2x+1+m,
∴C(0,1+m)、D(2,1+m)、F(1,0),
设P(0,t),
(a)当△PCD∽△FOP时,,
∴,
∴t2﹣(1+m)t+2=0①;
(b)当△PCD∽△POF时,,
∴,
∴t=(m+1)②;
(Ⅰ)当方程①有两个相等实数根时,
△=(1+m)2﹣8=0,
解得:m=2﹣1(负值舍去),
此时方程①有两个相等实数根t1=t2=,
方程②有一个实数根t=,
∴m=2﹣1,
此时点P的坐标为(0,)和(0,);
(Ⅱ)当方程①有两个不相等的实数根时,
把②代入①,得:(m+1)2﹣(m+1)+2=0,
解得:m=2(负值舍去),
此时,方程①有两个不相等的实数根t1=1、t2=2,
方程②有一个实数根t=1,
∴m=2,此时点P的坐标为(0,1)和(0,2);
综上,当m=2﹣1时,点P的坐标为(0,)和(0,);
当m=2时,点P的坐标为(0,1)和(0,2).
【点睛】
本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN的面积求得点N与点M的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.
展开阅读全文