收藏 分销(赏)

2022年福建省仙游县数学九年级第一学期期末达标测试试题含解析.doc

上传人:快乐****生活 文档编号:2564938 上传时间:2024-06-01 格式:DOC 页数:28 大小:1.58MB
下载 相关 举报
2022年福建省仙游县数学九年级第一学期期末达标测试试题含解析.doc_第1页
第1页 / 共28页
2022年福建省仙游县数学九年级第一学期期末达标测试试题含解析.doc_第2页
第2页 / 共28页
2022年福建省仙游县数学九年级第一学期期末达标测试试题含解析.doc_第3页
第3页 / 共28页
2022年福建省仙游县数学九年级第一学期期末达标测试试题含解析.doc_第4页
第4页 / 共28页
2022年福建省仙游县数学九年级第一学期期末达标测试试题含解析.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1已知二次函数的图象经过点,当自变量的值为时,函数的值为( )ABCD2小轩从如图所示的二次函数y=ax2+bx+c(a0)的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有A2个B3个C4个D5个3下列图形中是中心对称图形的有()个A1B2C3D44如图,平行于BC的直线DE把ABC分成的两部分面积相等,则为()ABCD5如图,正五边形内接于,为上的一点(点不与点重合),则的度数为( )ABCD6如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30夹角,这棵大树

3、在折断前的高度为( )A10米B15米C25米D30米7若二次函数的图象如图,与x轴的一个交点为(1,0),则下列各式中不成立的是( )ABCD8如图,ABC 中,点 D 为边 BC 的点,点 E、F 分别是边 AB、AC 上两点,且 EFBC,若 AE:EBm,BD:DCn,则( )A若 m1,n1,则 2SAEFSABDB若 m1,n1,则 2SAEFSABDC若 m1,n1,则 2SAEFSABDD若 m1,n1,则 2SAEFSABD9半径为6的圆上有一段长度为15的弧,则此弧所对的圆心角为( )ABCD10如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,An分别是正方形的

4、中心,则这n个正方形重叠部分的面积之和是()AnBn1C()n1Dn11抛物线的顶点为,与轴交于点,则该抛物线的解析式为( )ABCD12已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D5二、填空题(每题4分,共24分)13山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支)如果将

5、这个面团做成粗为的拉面,则做出来的面条的长度为_14如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_15如图,AB是的直径,BC与相切于点B,AC交于点D,若ACB=50,则BOD=_度16如图,在RtABC中,ACB90,ACBC,将RtABC绕A点逆时针旋转30后得到RtADE,点B经过的路径为,则图中阴影部分的面积是_17如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是_18如图,在平行四边形ABCD中,E为CB延长线上一点,且BE:CE2:5,连接DE交AB于F,则=_三、解答题(共78分)19(8分)如图,ABC的坐标依次为

6、(1,3)、(4,1)、(2,1),将ABC绕原点O顺时针旋转180得到A1B1C1(1)画出A1B1C1;(2)求在此变换过程中,点A到达A1的路径长20(8分)如图,已知三个顶点的坐标分别为, (1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则 21(8分)解方程:(1)2x50;(2) 22(10分)如图,在平面直角坐标系中,一次函数yax+b的图象与反比例函数y的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,4),连接AO,AO5,sin

7、AOC(1)求反比例函数和一次函数的解析式;(2)连接OB,求AOB的面积23(10分)(1)用配方法解方程:x24x+20;(2)如图,在平面直角坐标系中,ABC的顶点均在格点上,将ABC绕原点O逆时针方向旋转90得到A1B1C1请作出A1B1C1,写出各顶点的坐标,并计算A1B1C1的面积24(10分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物

8、线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标25(12分)如图,O是RtABC的外接圆,直径AB4,直线EF经过点C,ADEF于点D,ACDB(1)求证:EF是O的切线;(2)若AD1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积26抛物线L:y=x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kxk+4(k0)与抛物线L交于点M、N,若BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C

9、作y轴的垂线交抛物线L1于另一点D、F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点若PCD与POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标参考答案一、选择题(每题4分,共48分)1、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入=-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.2、D【解析】试题分析:如图,抛物线开口方向向下,a1对称轴x,1ab1故正确如图,当x=1时,y1,即a+b+c1故正确如图,当x=1时,y=ab+c1,2a2b+2c1,即3b2b+2c1b+2c1故正

10、确如图,当x=1时,y1,即ab+c1,抛物线与y轴交于正半轴,c1b1,cb1(ab+c)+(cb)+2c1,即a2b+4c1故正确如图,对称轴,则故正确综上所述,正确的结论是,共5个故选D3、B【解析】正三角形是轴对称能图形;平行四边形是中心对称图形;正五边形是轴对称图形;正六边形既是中心对称图形又是轴对称图形,中心对称图形的有2个故选B.4、D【分析】先证明ADEABC,然后根据相似三角形的面积的比等于相似比的平方求解即可.【详解】BCDE,ADEABC,DE把ABC分成的两部分面积相等,ADE:ABC=1:2,.故选D.【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形一边的直

11、线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;相似三角形面积的比等于相似比的平方.5、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72,即COD=72,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.6、B【分析】如图,在RtABC中,ABC=30,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度【详解】解:如图,在RtABC中,ABC=30,AB=2AC,而CA=5米,AB=10米,AB+

12、AC=15米所以这棵大树在折断前的高度为15米故选B【点睛】本题主要利用定理-在直角三角形中30的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题7、B【分析】根据二次函数图象开口方向与坐标轴的交点坐标特点,利用排除法可解答【详解】解:抛物线与x轴有两个交点,故A正确,不符合题意;函数图象开口向下,a0,抛物线与y轴正半轴相交,c0,抛物线对称轴在y轴的右侧,0,b0,abc0,故B错误,符合题意;又图象与x轴的一个交点坐标是(1,0),将点代入二次函数y=ax2+bx+c得a+b+c=0,故C正确,不符合题意,当x=-1时,y=a-b+c,由函数图象可知,y=a-

13、b+c0,故D正确,不符合题意,故选:B【点睛】本题考查二次函数图象上点的坐标特征,是基础题型,也是常考题型8、D【分析】根据相似三角形的判定与性质,得出,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案 .【详解】解:EFBC,若AE:EBm,BD:DC=n,AEFABC,当m=1,n=1,即当E为AB中点,D为BC中点时,A.当m1,n1时,SAEF与SABD同时增大,则或,即2或2,故A错误;B.当m1,n 1,SAEF增大而SABD减小,则,即2,故B错误;C.m1,n1,SAEF与SABD同时减小,则或,即2或2,故C错误; D.m1,n1,SAEF减小而SABD增大

14、,则,即2,故D正确 .故选D .【点睛】本题主要考查了相似三角形的判定与性质, 熟练掌握相似三角形的性质是解答本题的关键 .9、B【分析】根据弧长公式,即可求解【详解】,解得:n=75,故选B【点睛】本题主要考查弧长公式,掌握是解题的关键10、B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的 ,即是,n个这样的正方形重叠部分(

15、阴影部分)的面积和为:故选:B【点睛】本题考查了正方形的性质、全等三角形的判定与性质解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积11、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解12、D【解析】根据

16、二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题(每题4分,共24分)13、1【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案【详解】解:根据题意得:y= ,过(0.04,3200)k=xy=0.043200=128,y=(x0),当x=0.

17、16时,y= =1(cm),故答案为:1【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式14、【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决【详解】联立得,解得,或,点的坐标为,点的坐标为,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,得,直线的函数解析式为,当时,即点的坐标为,将代入直线中,得,直线与轴的夹角是,点到直线的距离是:,的面积是:,故答案为【点睛】本题考查二次函数的性质、一次函数的性质、轴对称最短路径问

18、题,解答本题的关键是明确题意,利用数形结合的思想解答15、80【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】解:BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键16、【解析】先根据勾股定理得到AB,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分SADE+S扇形ABDSABCS扇形ABD.【详解】解:如图,ACB90,ACBC,AB,S扇形ABD,又RtABC绕A点逆时针

19、旋转30后得到RtADE,RtADERtACB,S阴影部分SADE+S扇形ABDSABCS扇形ABD故答案是:【点睛】本题考查了扇形的面积公式:S,也考查了勾股定理以及旋转的性质17、【分析】根据题意算出正方形的面积和内切圆面积,再利用几何概率公式加以计算,即可得到所求概率【详解】解:正方形的边长为4,正方形的面积S正方形=16,内切圆的半径r=2,因此,内切圆的面积为S内切圆=r2=4, 可得米落入圆内的概率为: 故答案为:【点睛】本题考查几何概率、正多边形和圆,解答本题的关键是明确题意,属于中档题18、9:4【分析】先证ADFBEF,可知 ,根据BE:CE2:5和平行四边形的性质可得AD:

20、BE的值,由此得解.【详解】解:BE:CE=2:5,BE:BC=2:3,即BC:BE=3:2,四边形ABCD是平行四边形,ADBC,AD=BC,AD:BE=3:2,ADFBEF,.故答案为:9:4.【点睛】本题考查相似三角形的性质和判定,平行四边形的性质.熟记相似三角形的面积比等于相似比的平方是解决此题的关键.三、解答题(共78分)19、(1)画图见解析;(2)点A到达A1的路径长为【分析】(1)根据旋转的定义分别作出点A,B,C绕原点旋转所得对应点,再首尾顺次连接即可得;(2)点A到达A1的路径是以O为圆心,OA为半径的半圆,据此求解可得【详解】解:(1)如图所示,A1B1C1即为所求(2)

21、OA,点A到达A1的路径长为2【点睛】本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键20、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2

22、,BPC是等腰直角三角形,PBC=90,BCP=45,tanBCP=1,故答案为1.【点睛】本题考查了作图中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.21、(1);(2);过程见详解【分析】(1)利用因式分解法解一元二次方程即可;(2)利用直接开平方法求解即可【详解】解:(1)2x50解得:;(2) 解得【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键22、(1)y,yx1;(2)【分析】(1)过点A作AEx轴于点E,通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系

23、数法求出反比例函数解析式即可,再由点B在反比例函数图象上可求出点B的坐标,由点A、B的坐标利用待定系数法求出直线AB的解析式;(2)令一次函数解析式中y0即可求出点C的坐标,再利用三角形的面积公式即可得出结论【详解】解:(1)过点作轴于点,则在中,点的坐标为点在反比例函数的图象上,解得:反比例函数解析式为点在反比例函数的图象上,解得:,点的坐标为将点、点代入中得:,解得:,一次函数解析式为(2)令一次函数中,则,解得:,即点的坐标为【点睛】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,根据点的坐标利用待定系数法求出函数解析式是关键23、(1)x12+,x

24、22;(2)A1(1,1),B1(4,0),C1(4,2),A1B1C1的面积222【分析】(1)利用配方法得到(x2)22,然后利用直接开平方法解方程;(2)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1;然后写出A1B1C1各顶点的坐标,利用三角形面积公式计算A1B1C1的面积【详解】解:(1)移项,得x24x2,配方,得x24x+42+4,即(x2)22,所以x2所以原方程的解为x12+,x22;(2)如图,A1B1C1为所作;A1(1,1),B1(4,0),C1(4,2),A1B1C1的面积222【点睛】本题主要考察作图-旋转变换、三角形的面积公式和解方程,解题关键是熟

25、练掌握计算法则.24、(1);(2)BPC面积的最大值为 ;(3)D的坐标为(0,-1)或(0,-);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用SBPC=PHOB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E(-2,9),作点F(2,9)关于x轴的对称点F(3,-8),连接E、F分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解【详解】解:(1)把,分别代

26、入得: 抛物线的表达式为:(2)如图,过点P作PHOB交BC于点H令x=0,得y=5C(0,5),而B(5,0)设直线BC的表达式为: 设,则 BPC面积的最大值为(3)如图, C(0,5),B(5,0)OC=OB,OBC=OCB=45AB=6,BC=要使BCD与ABC相似则有或 当时则 D(0,) 当时,CD=AB=6,D(0,-1)即:D的坐标为(0,-1)或(0,-) (4)E为抛物线的顶点,E(2,9)如图,作点E关于y轴的对称点E(2,9),F(3,a)在抛物线上,F(3,8),作点F关于x轴的对称点F(3,-8),则直线E F与x轴、y轴的交点即为点M、N 设直线E F的解析式为:

27、则直线E F的解析式为: ,0),N(0,)【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握25、(1)见解析;(2);(3)【分析】(1)连接OC,由OBOC,利用等边对等角得到BCOB,由ACDB,得到ACD+OCA90,即可得到EF为圆O的切线;(2)证明RtABCRtACD,可求出AC2,由勾股定理求出BC的长即可;(3)求出B30,可得AOC60,在RtACD中,求出CD,然后用梯形ADCO和扇形OAC的面积相减即可得出答案【详解】(1)证明:连接OC,AB是O直径,ACB90,即BCO+OCA90,O

28、BOC,BCOB,ACDB,ACD+OCA90,OC是O的半径,EF是O的切线;(2)解:在RtABC和RtACD中,ACDB,ACBADC,RtABCRtACD,AC2ADAB144,AC2,;(3)解:在RtABC中,AC2,AB4,B30,AOC60,在RtADC中,ACDB30,AD1,CD,S阴影S梯形ADCOS扇形OAC【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,相似三角形的判定与性质,勾股定理以及扇形面积的计算,熟练掌握圆的基本性质是解本题的关键26、(1)y=x2+2x+1;(2)-3;(3)当m=21时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0

29、,1)和(0,2)【解析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kxk+4=k(x1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由SBMN=SBNGSBMG=BGxNBGxM=1得出xNxM=1,联立直线和抛物线解析式求得x=,根据xNxM=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分PCDPOF和PCDPOF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得【

30、详解】(1)由题意知,解得:,抛物线L的解析式为y=x2+2x+1;(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,y=kxk+4=k(x1)+4,当x=1时,y=4,即该直线所过定点G坐标为(1,4),y=x2+2x+1=(x1)2+2,点B(1,2),则BG=2,SBMN=1,即SBNGSBMG=BG(xN1)-BG(xM-1)=1,xNxM=1,由得:x2+(k2)xk+3=0,解得:x=,则xN=、xM=,由xNxM=1得=1,k=3,k0,k=3;(3)如图2,设抛物线L1的解析式为y=x2+2x+1+m,C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),(a

31、)当PCDFOP时,t2(1+m)t+2=0;(b)当PCDPOF时,t=(m+1);()当方程有两个相等实数根时,=(1+m)28=0,解得:m=21(负值舍去),此时方程有两个相等实数根t1=t2=,方程有一个实数根t=,m=21,此时点P的坐标为(0,)和(0,);()当方程有两个不相等的实数根时,把代入,得:(m+1)2(m+1)+2=0,解得:m=2(负值舍去),此时,方程有两个不相等的实数根t1=1、t2=2,方程有一个实数根t=1,m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=21时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2)【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN的面积求得点N与点M的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服