资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是 ( )
A.小明:“早上8点” B.小亮:“中午12点”
C.小刚:“下午5点” D.小红:“什么时间都行”
2.如图,在Rt△ABC中,AC=3,AB=5,则cosA的值为( )
A. B. C. D.
3.下列由几何图形组合的图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为( )
A.2.4m B.24m C.0.6m D.6m
5.已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )
A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)
6.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为( )
A.(3,1) B.(4,1) C.(3,3) D.(3,4)
7.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为( )
A.106° B.116° C.126° D.136°
8.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过( )秒,四边形APQC的面积最小.
A.1 B.2 C.3 D.4
9.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是( )
A.1 B.1.2 C.2 D.3
10.反比例函数图象上的两点为,且,则下列表达式成立的是( )
A. B. C. D.不能确定
二、填空题(每小题3分,共24分)
11.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为________________
12.如图,已知菱形的面积为,的长为,则的长为__________.
13.若能分解成两个一次因式的积,则整数k=_________.
14.当________时,的值最小.
15.设x1,x2是方程x2+3x﹣1=0的两个根,则x1+x2=_____.
16.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.
17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。
18.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.
三、解答题(共66分)
19.(10分)综合与实践
在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.
探究展示:勤奋小组很快找到了点、的位置.
如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.
问题解决:
(1)按勤奋小组的这种折叠方式,的长度为 .
(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.
(3)在(2)的条件下,求出的长.
20.(6分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.
(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为 .
(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;
(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.
21.(6分)已知反比例函数的图象过点P(-1,3),求m的值和该反比例函数的表达式.
22.(8分)在△ABC中,AD、CE分别是△ABC的两条高,且AD、CE相交于点O,试找出图中相似的三角形,并选出一组给出证明过程.
23.(8分)某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.
24.(8分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)
…
30
40
50
60
…
每天销售量y(件)
…
500
400
300
200
…
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
25.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)求扇形统计图中的值和“E”组对应的圆心角度数;
(3)请估计该校2000名学生中每周的课外阅读时间不小于6小时的人数.
26.(10分)如图,在平面直角坐标系中,点,过点作轴的垂线,垂足为.作轴的垂线,垂足为点从出发,沿轴正方向以每秒个单位长度运动;点从出发,沿轴正方向以每秒个单位长度运动;点从出发,沿方向以每秒个单位长度运动.当点运动到点时,三点随之停止运动.设运动时间为.
(1)用含的代数式分别表示点,点的坐标.
(2)若与以点,,为顶点的三角形相似,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、C
【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.
解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.
故选C.
本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.
2、B
【分析】根据余弦的定义计算即可.
【详解】解:在Rt△ABC中,
;
故选:B.
【点睛】
本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.
3、A
【分析】根据轴对称图形和中心对称图形的定义逐项判断即得答案.
【详解】解:A、既是轴对称图形又是中心对称图形,故本选项符合题意;
B、是轴对称图形,但不是中心对称图形,故本选项不符合题意;
C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;
D、是中心对称图形,但不是轴对称图形,故本选项不符合题意.
故选:A.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,属于应知应会题型,熟知二者的概念是解题关键.
4、D
【解析】试题解析:作AN⊥EF于N,交BC于M,
∵BC∥EF,
∴AM⊥BC于M,
∴△ABC∽△AEF,
∴,
∵AM=0.6,AN=30,BC=0.12,
∴EF==6m.
故选D.
5、D
【分析】根据反比例函数图象和性质即可解答.先判断出反比例函数图象的一分支所在象限,即可得到另一分支所在象限.
【详解】解:由于点(1,2)在第一象限,则反比例函数的一支在第一象限,另一支必过第三象限.
第三象限内点的坐标符号为(﹣,﹣)
故选:D.
【点睛】
此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数图像的对称性.
6、C
【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.
【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),
∴在第一象限内将线段AB缩小为原来的后得到线段CD,
∴点C的横坐标和纵坐标都变为A点的一半,
∴点C的坐标为:(3,3).
故选:C.
【点睛】
此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.
7、B
【解析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.
【详解】解:∵四边形ABCD是圆的内接四边形,
∴∠D=180°-∠ABC=180°-64°=116°,
∵点D关于的对称点在边上,
∴∠D=∠AEC=116°,
故答案为B.
【点睛】
本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.
8、C
【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.
【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:
S=S△ABC-S△PBQ
= ×12×6- (6-t)×2t
=t2-6t+36
=(t-3)2+1.
∴当t=3s时,S取得最小值.
故选C.
【点睛】
本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.
9、A
【解析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.
【详解】解:∵等腰Rt△ABC,BC=4,
∴AB为⊙O的直径,AC=4,AB=4,
∴∠D=90°,
在Rt△ABD中,AD=,AB=4,
∴BD=,
∵∠D=∠C,∠DAC=∠CBE,
∴△ADE∽△BCE,
∵AD:BC=:4=1:5,
∴相似比为1:5,
设AE=x,
∴BE=5x,
∴DE=-5x,
∴CE=28-25x,
∵AC=4,
∴x+28-25x=4,
解得:x=1.
故选A.
【点睛】
题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.
10、D
【分析】根据反比例函数图象上点的坐标特征得到,,然后分类讨论:0< <得到;当<0<得到<;当<<0得到.
【详解】∵反比例函数图象上的两点为,,
∴,
∴,,
当0< <,;
当<0<,<;
当<<0,;
故选D.
【点睛】
本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.
二、填空题(每小题3分,共24分)
11、
【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.
【详解】解:∵∠DAB=∠ABC=90°,
∴AB、BC是⊙O的切线,
∵CF是⊙O的切线,
∴AF=EF,BC=EC,
∴FC=AF+DC,
设AF=x,则,DF=2-x,
∴CF=2+x,
在RT△DCF中,CF2=DF2+DC2,
即(2+x)2=(2-x)2+22,解得x=,
∴DF=2-=,
∴,
故答案为:.
【点睛】
本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.
12、3
【分析】根据菱形面积公式求得.
【详解】解:
【点睛】
本题主要考查了菱形的对角线互相垂直,菱形的面积公式.
13、
【分析】根据题意设多项式可以分解为:(x+ay+c)(2x+by+d),则2c+d=k,根据cd=6,求出所有符合条件的c、d的值,然后再代入ad+bc=0求出a、b的值,与2a+b=1联立求出a、b的值,a、b是整数则符合,否则不符合,最后把符合条件的值代入k进行计算即可.
【详解】解:设能分解成:(x+ay+c)(2x+by+d),
即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,
∴cd=6,
∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),
∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,
或c=6,d=1时,ad+bc=a+6b=0,与2a+b=1联立求解得,
②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,
或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,
③c=-2,d=-3时,ad+bc=-3a-2b=0,与2a+b=1联立求解得,
或c=-3,d=-2,ad+bc=-2a-3b=0,与2a+b=1联立求解得,
④c=-1,d=-6时,ad+bc=-6a-b=0,与2a+b=1联立求解得,
或c=-6,d=-1时,ad+bc=-a-6b=0,与2a+b=1联立求解得,
∴c=2,d=3时,c=-2,d=-3时,符合,
∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,
∴整数k的值是1,-1.
故答案为:.
【点睛】
本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a、b进行验证,注意不要漏解.
14、
【分析】根据二次根式的意义和性质可得答案.
【详解】解:由二次根式的性质可知,当时,取得最小值0
故答案为2
【点睛】
本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”
15、﹣1.
【分析】直接根据一元二次方程根与系数的关系求解即可.
【详解】解:∵x1,x2是方程x2+1x﹣1=0的两个根,
∴x1+x2=﹣1.
故答案为﹣1.
【点睛】
本题考查了根与系数的关系: x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=- ,x1x2=.
16、
【分析】根据旋转的性质可知△ACC1为等边三角形,进而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的长,利用线段的和差即可得出结论.
【详解】根据旋转的性质可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,
∴△ACC1为等边三角形,
∴∠AC1C=∠C=60°,CC1=AC1.
∵C1是BC的中点,
∴BC1=CC1=AC1=2,
∴∠B=∠C1AB=20°.
∵∠B1C1A=∠C=60°,
∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,
∴DC1=AC1=1,
∴B1D=B1C1-DC1=4-1=2.
故答案为:2.
【点睛】
本题考查了旋转的性质以及直角三角形的性质,得出△ADC1是含20°的直角三角形是解答本题的关键.
17、1或
【分析】分两种情形分别求解即可解决问题.
【详解】①如图1中,取BC的中点H,连接AH.
∵AB=AC,BH=CH,
∴AH⊥BC,设BC=AH=1a,则BH=CH=a,
∴tanB==1.
②取AB的中点M,连接CM,作CN⊥AM于N,如图1.
设CM=AB=AC=4a,则BM=AM=1a,
∵CN⊥AM,CM=CA,
∴AN=NM=a,
在Rt△CNM中,CN=,
∴tanB=,
故答案为1或.
【点睛】
本题考查解直角三角形、等腰三角形的性质、“好玩三角形”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
18、
【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.
【详解】解:∵∠BAC=90°,且BA=6,AC=8,
∴BC==10,
∵DM⊥AB,DN⊥AC,
∴∠DMA=∠DNA=∠BAC=90°,
∴四边形DMAN是矩形,
∴MN=AD,
∴当AD⊥BC时,AD的值最小,
此时,△ABC的面积=AB×AC=BC×AD,
∴AD==,
∴MN的最小值为;
故答案为:.
【点睛】
本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
三、解答题(共66分)
19、(1)3;(2)见解析;(3)
【分析】(1)由勾股定理可求AB的长,由折叠的性质可得AC=AE=6,CD=DE,∠C=∠BED=90°,由勾股定理可求解;
(2)如图所示,当DE∥AC,∠EDB=∠ACB=90°,即可得到答案;
(3)由折叠的性质可得CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,可得DE=CD=CF=EF,通过证明△DEB∽△CAB,可得 ,即可求解.
【详解】(1)∵∠ACB=90°,AC=6,BC=8,
∴,
由折叠的性质可得:△ACD≌△AED,
∴AC=AE=6,CD=DE,∠C=∠BED=90°,
∴BE=10-6=4,
∵BD2=DE2+BE2,
∴(8-CD)2=CD2+16,
∴CD=3,
故答案为:3;
(2)如图3,当DE∥AC,△BDE是直角三角形,
(3)∵DE∥AC,
∴∠ACB=∠BDE=90°,
由折叠的性质可得:△CDF≌△EDF,
∴CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,
∴EF=DE,
∴DE=CD=CF=EF,
∵DE∥AC,
∴△DEB∽△CAB,
∴,
∴,
∴DE=,
∴
【点睛】
此题考查几何变换综合题,全等三角形的性质,折叠的性质,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质进行推理是解题的关键.
20、 (1)①④;(2);(3)或
【分析】(1)根据的“隔离直线”的定义即可解决问题;
(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;
(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.
【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;
故答案为:①④;
(2)存在,
理由如下:
连接,过点作轴于点,如图,
在Rt△DGO中,,
∵⊙O的半径为,
∴点D在⊙O上.
过点D作DH⊥OD交y轴于点H,
∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.
设直线OD的解析式为,
将点D(2,1)的坐标代入得,
解得:,
∵DH⊥OD,
∴设直线DH的解析式为,
将点D(2,1)的坐标代入得,
解得:,
∴直线DH的解析式为,
∴“隔离直线”的表达式为;
(3)如图:
由题意点F的坐标为(),
当直线经过点F时,,
∴,
∴直线,即图中直线EF,
∵正方形A1B1C1D1的中心M(1,t),
过点作⊥y轴于点G,
∵点是正方形的中心,且,
∴B1C1,,
∴正方形A1B1C1D1的边长为2,
当时,,
∴点C1的坐标是(),此时直线EF是函数)的图象与正方形A1B1C1D1的“隔离直线”,
∴点的坐标是(-1,2),
此时;
当直线与只有一个交点时,
,消去y得到,
由,可得,
解得:,
同理,此时点M的坐标为:(),
∴,
根据图象可知:
当或时,直线是函数)的图象与正方形A1B1C1D1的“隔离直线”.
【点睛】
本题是二次函数综合题,考查了二次函数的性质、正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
21、2;.
【分析】把点P的坐标代入函数解析式求得m的值即可
【详解】解:把点P(-1,3)代入,得.解得.
把m=2代入,得,即.
∴反比例函数的表达式为.
【点睛】
本题考查了待定系数法确定函数关系式,反比例函数图象上点的坐标特征.难度不大,熟悉函数图象的性质即可解题.
22、△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,证明见解析
【分析】由题意直接根据相似三角形的判定方法进行分析即可得出答案.
【详解】解:图中相似的三角形有:△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA.
∵AD、CE分别是△ABC的两条高,
∴∠ADB=∠CDA=∠CEB=∠AEC=90°,
∴∠B+∠BCE=90°,∠B+∠BAD=90°,
∴∠BAD=∠BCE,
∵∠EBC=∠ABD,
∴△ABD∽CBE.
【点睛】
本题考查相似三角形的判定.注意掌握相似三角形的判定以及数形结合思想的应用.
23、43 m.
【解析】直接利用相似三角形的判定与性质得出,进而得出答案.
【详解】解 由题意可得△AEC∽△ADB,
则=,
故=,
解得DB=43,
答:小雁塔的高度为43 m.
【点睛】
本题考查了相似三角形的判定与性质,正确得出△AEC∽△ADB是解题的关键.
24、(1)图见解析,y=-10x+1;(2)单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
【分析】(1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式;
(2)利用二次函数的知识求最大值;
(3)根据函数的增减性,即可求得销售单价最高不能超过45元/件时的最大值.
【详解】解:(1)画图如图;
由图可猜想y与x是一次函数关系,
设这个一次函数为y=kx+b(k≠0)
∵这个一次函数的图象经过(30,500)、(40,400)这两点,
∴,解得
∴函数关系式是:y=-10x+1.
(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得
W=(x-20)(-10x+1)
=-10x2+1000x-16000
=-10(x-50)2+9000
∴当x=50时,W有最大值9000.
所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.
(3)对于函数W=-10(x-50)2+9000,
当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
25、(1)补全频数分布直方图,见解析; (2) “E”组对应的圆心角度数为14.4°;(3)该校2000名学生中每周的课外阅读时间不小于6小时的人数为580人.
【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;
(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;
(3)用2000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.
【详解】解:(1)数据总数为:21÷21%=100,
第四组频数为:100-10-21-40-4=25,
频数分布直方图补充如下:
(2)m=40÷100×100=40;
“E”组对应的圆心角度数为;
(3)该校2000名学生中每周的课外阅读时间不小于6小时的人数为(人).
【点睛】
此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.
26、(1)点的坐标为,点的坐标为;(2)的值为
【分析】(1)根据题意OE=3t,OD=t, BF=2t, 据四边形OABC是矩形,可得AB=OC=10,BC=OA=12,从而可求得OE、AF,即得E、F的坐标;
(2)只需分两种情况(①△ODE∽△AEF ②△ODE∽△AFE)来讨论,然后运用相似三角形的性质就可解决.
【详解】解:(1) ∵BA⊥轴,BC⊥轴, ∠AOC=90°,
∴∠AOC=∠BAO=∠BCO=90°,
∴四边形OABC是矩形,
又∵B(12,10),
∴AB=CO=10, BC=OA=12
根据题意可知OE=3t,OD=t,BF=2t.
∴AF=10-2t,AE=12-2t
∴点E的坐标为(3t,0),点F的坐标为(12,10-2t)
(2)①当△ODE∽△AEF时,则有,
∴,
解得(舍),;
②当△ODE∽△AFE时,则有,
∴,
解得(舍),;
∵点运动到点时,三点随之停止运动,
∴,
∴,
∵,
∴舍去,
综上所述:的值为
故答案为:t=
【点睛】
本题考查了平面直角坐标系中的动点问题,运用相似三角形的性质来解决问题.易错之处是这两种情况都要考虑到.
展开阅读全文