收藏 分销(赏)

数学思维训练教材六年级上册.doc

上传人:快乐****生活 文档编号:2562653 上传时间:2024-06-01 格式:DOC 页数:41 大小:964.01KB
下载 相关 举报
数学思维训练教材六年级上册.doc_第1页
第1页 / 共41页
数学思维训练教材六年级上册.doc_第2页
第2页 / 共41页
数学思维训练教材六年级上册.doc_第3页
第3页 / 共41页
数学思维训练教材六年级上册.doc_第4页
第4页 / 共41页
数学思维训练教材六年级上册.doc_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、第1讲 比较大小在平时数学学习,尤其是数学竞赛中,我们经常遇到一些题目: (1)比较这几个分数的大小:、(2)试比较和,那个分数大?如果我们不去研究其中的规律,相信大家一定会很难解决这样的题目。本讲,我们主要来讲一讲有关比较大小的一些知识和方法。例1: 已知A=B = C= D=E(ABCDE都不等于0),将A、B、C、D、E按从大倒小的顺序排叠起来。分析与解 为了方便比较,我们首先将这五个算式统一写成乘法形式,这样原来的算式就变成A=B=C=D=E。下面我们可以运用倒数的知识来解决这一问题。首先我们可以假设所有算式的运算结果等于1。那么,A就是的倒数,即;同理,B应是,C是,D是,E是。这样

2、,我们很容易就能比较出这五个数的大小。因为,所以DECBA.随堂练习一: 如果a=b=c=d(a、b、c、d均不等于0),a、b、c、d四个数中,谁最大?谁最小?例2:将下列分数从小到大排列起来: 、。分析与解 比较几个分数的大小,课本上介绍的主要方法是先通分,再比较大小。就本题而言,如果用通分再比较,太麻烦,我们可以根据“同分子的分数,分母大的分数反而小”这一性质,把这几个分数先化成同分子的分数,在进行比较就比较容易了。因为2、3、10、12、15、的最小公倍数是60,根据分数的基本性质,可以把它们分别化为:、。由150148 145 140 138,可以得到:,即。方法点评 如果几个分数的

3、公分母比较大时,采用先通分、再比较的方法比较复杂。我们可以考虑将这些分数先化成同分子的分数,再比较大小。随堂练习二: 把下列分数按从小到大的顺序排列起来。、例3:已知A=,B=。试比较A与B的大小。分析与解 这两个分数的分子与分母的值都比较大,无论采用“先同分、再比较”,还是“先化成同分子的分数,再比较”的方法,都不容易。但仔细观察,可以发现:这两个分数的分子都比分母小2。我们可以根据这一特点,先比较这两个分数与1的差,再确定这两个分数的大小,这种比较方法我们把它称为“间接比较法”。因为比A比1少,B比1少,而,所以AB。方法点评 如果两分数的分子与分母的差相等时,我们可以用间接比较法,即先比

4、较这两个分数与1的差,再确定这两个数的大小。随堂练习三: 试比较下列两个分数的大小。和例4:比较和,那个分数大?分析与解 这道题中的两个分数与上面几个题中的分数有所不同,虽然也可以采用通分或化成同分子的分数的方法,但显然不是最佳方法。仔细分析这两个数,可以发现这两个数的分母都比分子的14倍多7,所以我们可以线比较它们的倒数的大小,倒数大的那个分数的值比较小。想一想,这是为什么?的倒数是,的倒数是,因为,所以。方法点评 从本题可以看出,如果两个分数的分子与分母具有相同的倍数关系,而且余数相同,采用比较倒数的方法比较简便。随堂练习四: 试比较和的大小。例5:试比较下面两个分数的大小。和分析与解 观

5、察这两个分数,你会发现用上面的几种方法无法解答。但分析其中的数据,你会发现,第二个分数的分子2207=1207+1000,分母2006=1006+1000,即第一个分数的分子与分母都加上同一个数:1000,就正好等于第二个分数。方法点评 当ab 时, ,即一个分数的分子和分母都加上同一个数,得到的新分数比原分数小,所以。同理,一个真分数的分子和分母都加上同一个数,得到的分数比原分数大。随堂练习五: 比较与的大小拓展训练1、把下面及格分数按照从大到小的顺序起来。、2、比较下面两个分数的大小。和3、比较和的大小。4、比较与的大小。5、比较与的大小。第2讲 速算与巧算专题简析:学习数学离不开数的计算

6、,而学习数学的最终目的在于运用所学的数学知识、技能来解决实际问题。因此,要学好数学,就必须做到计算准确而又迅速。本讲就介绍一些速算与巧算的技巧。例1:计算下面各题。(1)9 (2)2003分析与解 同学们都会计算带分数除法,但相信同学们看了这两道题目后,都会感到计算太麻烦,如果我们开动脑筋想一想,就会发现:可以把(1)分成一个9的倍数与另一个较小得数,再利用除法的性质就可以使计算简便;把例(2)中的被除数和除数利用商不变的性质,同时除以2003后,计算就很简便了。(1)9 (2)2003 =(63+)9 =(20032003)(2003) =63 9 + 9 =1(20032003+2003)

7、 =7+ =1 = =方法点评:有些分数四则运算用一般的方法既麻烦又费时,而且有容易出错,这时可以通过款差题目中的数据特点,把一个数拆成几个数,在计算,往往可以达到事半功倍的效果。随堂练习一:计算:(1)55 (2)167例2:计算:(1+)(1+)(1+)()分析与解 这道题虽然算式很长,但仔细分析其中的数据,可以发现组成这个算式的数并不多,我们可以把重复出现的数用字母表示,这样可以简化题意,方便简算。设=A 1+=B,原来的算式可以转化成:(1+A)B-BA=B+AB-AB=B所以本题的结果为:1+=方法点评:用字母是可以使复杂的算式变得简洁,有助于我们发现规律。随堂练习二: 计算:(1+

8、)(+)-(1+)()例3:计算 分析与解 这组分数的特点是:分母为1的分数有1个,分母为2的分数有3个,分母为3的分数有5个且同分母的分数的和依次为1,2,3,4,5这是一个扥差数列,可以直接利用等差数列求和公式来计算,即(首项+末项)项数2=数列的和。原式=1+2+3+4+49+50=(1+50)502=1275方法点评:在数列求和中,发现与研究数列规律是解决有关问题的前提,灵活选用合适的方法是基本策略,转化与分组是主要方法和技巧。随堂练习三:计算:+例4:计算:(1)()()(2)分析与解 (1)被除数与除数中两个分数的分母分别相同,经试验发现:=145(),=5().所以,原式=()(

9、)=145()5()=1455=29(2)我们注意到,这个分数的分子与分母尽管数据很长,但每个数据分别是由2002和2003组成。因而我们可以先采用分解质因数,找出其中的规律,再进行简便计算。因为2002=2002120022002=200210001200220022002=20021000110001所以2002+20022002+200220022002=2002(1+10001+100010001)同理2003+20032003+200320032003=2003(1+10001+100010001)原式=随堂练习四:计算:(1)()()(2)例5:计算 分析与解 这道题的加数很多,如

10、果采用同分后计算公分母一定很大,这显然不切合实际。下面我们来分析一下:=1-,=,.=1-+=1-= 方法点评:这种把一个分数拆成两个分数的差或和的方法,叫做裂项法。但是需要指出的是,题中每个分数的分母是两个连续自然数的乘积,如果不是,方法就不同了,裂项法的主要计算方法可以用下面公式来概括。当ab时, = () 随堂练习五: 计算 拓展训练1.、计算(1+ ) (+)-(1+) () 2、计算() -() 3、计算 4、计算 5、计算(1+) (1-)(1+)(1-)(1+)(1-) 第3讲 比的意义和应用比有奇妙的作用,在许多分数、百分数应用题中,如果恰当运用比的知识,你会真正理解什么是“事

11、半功倍”。在这一讲,我们一起研究这方面的知识。例1:两只相同的杯子中装满盐水,一只杯子中盐与水的比是12,另一只杯子中盐与比是15 。若把两杯盐水混合在一起,这时盐与水的比是多少?分析与解 要求混合液中的盐与水的比是多少,只要求出混合液中盐与水分别是多少就行了,因为两只杯子相同,所以设每只杯子中的盐水为1,则第一支杯子中的盐占,水占;第二只杯子中的盐占,水占。两只杯子中的盐水混合后,盐为+=,水为+=。所以,混合液中的盐与水的比为:(+)(+)=13。答:混合后,盐与水 的比为13。方法点评:求两个量的比时,首先要能正确分析与计算每个量所占的份数或分率,然后再进行解答。随堂练习一: 六年(1)

12、班男、女人数的比是54,六年(2)班男、女人数的比是21,两班人数相等。求六年(1)班男男生与六年(2)班男生的人数比。例2:如右图,原形中的阴影部分面积占圆面积的,占正方形面积的,三角形中阴影部分的面积占三角形面积的,占正方形面积的。圆,正方形、三角形面积的最简整数比是多少?分析与解 要求圆、正方形、三角形面积的最简整数比是多少,只需知道这三个图形的面积各是多少就行了,因为圆和三角形都与正方形的面积有关,我们就设正方形的面积为12,那么圆的面积就是:12=16;三角形的面积为: 12=15。所以这三个图形的面积比就是:(12)12(12)=161215方法点评 在求几个量的比时,我们可以先假

13、设其中一个量等于几,然后根据条件计算出其他量,再求比,这样解决问题比较容易。随堂练习二:如图,两个长方形重叠部分的面积相当于大长方形面积的,相当于小长方形面积的。这两个长方形的面积比是多少?例3:有大小两个长方形,大长方形的长比小长方形的长多,而小长方形的宽比大长方形的宽多。求这两个长方形的面积比。分析与解 大长方形的长比小长方形的长多,可以把小长方形的长看做4份,大长方形的长就是1+4=5份;小长方形的宽比大长方形的宽多。可以理解成八大长方形的宽看做10份,小长方形的宽是1+10=11份。所以,这两个长方形的面积比为:(510) (411)=5544= 2522 答:大小两个长方形的面积比为

14、 2522 。随堂练习三: 有大小两个正方形,大正方形的边长比小正方形的边长多。求两个正方形的周长比。例4:六年(1)班男人数的与女生人数的相等,已知男生比女生多5人,这个班男、女生各有多少人?分析与解 根据男人数的与女生人数的相等,可以列出数量关系:男生人数=女生人数。假设男人数的与女生人数的都是1,则男生人数为1=;女生人数为1=。所以,男、女生人数的比为:(1)(1)=65每一份的人数就是:5(6-5)=5(人)男生人数就是:56=30(人)女生人数就是:55=25(人)答:男生有30人,女生有25人。随堂练习四: 拔一根绳子按53截成甲、乙两段,已知乙比甲短1.2米。这根绳子原来全长多

15、少米? 例5: 小丽读一本书,已读的页数和未读的页数 的比是 15 ,若再读45页,则已读的页数和未读的页数的比是3 5。这本书共有多少页?分析与解 根据“已读的页数和未读的页数的比15”可知,把未读的页数看做1份,未读的页数看5份,总页数就是1+5=6份,已读的页数占总页数的。若再读45页,则已读的页数和未读的页数的比是3 5.即把这时已读的页数看做3份,未读的页数看做5份,总页数就是3+5=8份,这时已读的页数占总数的。45页占总页数的-=,这本书共有的页数是:45(-)=45=216(页)答 :这本书共有216页。随堂练习五:一条路,已修的米数和未修的米数比为23,后来又修了2000米,

16、这时已修的米数与未修的米数比为32。这条路全长多少米? 拓展训练1、两个西服厂,一个月内生产的西服数量比是65,两个厂西服价格比是1110.求两个厂这个月生产西服总产值的比。2、如图,求图中阴影部分与圆环的面积比。3、把100克纯酒精装在一个玻璃瓶里,正好装满。用去20克后,加满蒸流水 ;又用去20克 后,再加满蒸馏水。求这时瓶里蒸馏水与纯酒精的比。4、一个长方形长与宽的为73,如果把长减少 12厘米,宽增加16厘米,正好变成一个正方形。这个长方形的面积是多少平方厘米?5、水池里直立着两根木桩,露出水面部分的长度比为101,当水面下降20厘米后,露出水面那部分的长度之比为52。求木桩原来露出的

17、部分是多少厘米? 第4讲 按比例分配例1:有一块长方形的土地,测得周长为60米,. 长与宽的比是32.求这块地的面积。分析与解 求长方形的面积必须知道长与宽,已知长方形的周长为60米,那么,长与宽的和就是:602=30(m);它的长就是:30=18(米);它的宽就是:30=12(米。)至此,长方形的面积很容易求出。602=30(m)30=18(米)30=18(米)1812=216(平方米)答:这块长方形土地的面积是216平方米。方法点评:此题的解题关键是先求出长与宽的和,然后在按比例分配球出长与宽,进而求出它的面积。随堂练习一:长方体的棱长总和为220厘米,已知长、宽、高的比为542.这个长方

18、体的体积是多少立方厘米?例2:西园村挖一条水渠,全长420米,第一、二两队所挖米数比是34,第二、三两队所挖米数比是67。三个队各挖了多少米?分析与解 我们注意到,这题给出两个比,两个比中都含有第二队,但第二队在这两个比中所占的份数却不同。因此,要解决问题,必须首先把这两个比进行统一,转化成连比。这里利用比的基本性质,把两个比中的第二队所占的份数转化为相同。第一队第二队第三队34=(33)(43)=91267=(62)(72)=1214这样,我们可以得到第一、二、三队所挖的米数比为91214,下面只需将420米按比例分配就行了。9+12+14=35420=108(米)420=144(米 )42

19、0=168(米 )答:第一队挖了108米,第二队挖了144米 ,第三队挖了168米 。方法点评:这道题的解题关键是:应用比的基本性质,把三个队的米数之间的联系有两个独立的比转化成一个连比。随堂练习二: 人民路小学六年级的学生分三批去幼儿园参观海狮表演,第一批与第二批的人数比为54,第二批与第三批的人数比为32.已知六年级共有学生210人,第二批有多少人?例3: 工厂把10000元奖金分给三个车间,第一车间与第二车间所得奖金的比是32,第三车间比第二车间多200元。三个车间各得多少元?分析与解 根据题意,把第一车间所得奖金看做3份,第二车间所得奖金数是2份,第三车间所得将金属应为2份多200元。

20、从10000元奖金中先拿出200元给第三车间,那么剩下的9800元中,三个车间应得奖金的比是322,再按比例进行分配。最后第三车间的奖金加上先分得的200元就行了。3+2+2=710000-200=9800(元)9800=4200(元)9800=2800(元)2800+200=3000(元)答:第一车间分得4200元,第二车间分得2800元,第三车间分得3000元。随堂练习三: 甲、乙、丙三堆煤共450吨,甲堆煤与乙堆煤的重量比为54,丙堆煤的重量是乙堆煤的1.5倍。三堆煤各重多少吨?例4:A、B两桶油共重90千克,若把A桶中油的倒入B桶,则两桶油的重量比是12. A 、B两桶油原来各多少千克

21、? 分析与解 把A桶油的倒入B桶,两桶油的总重量没有变,还是90千克。因此可以按比例分配求出现在A桶油的重量:90=30(千克)。A桶倒出后是30千克,即30千克占A桶油原有油的,这样可以倒推A桶原有油的重量。则就可求出B桶油的重量。90=30(千克)30=40(千克)9040=50(千克)答 :A桶原有油40千克,B桶原有油50千克。方法点评 解决这道题的关键是抓住两桶油的总重量不变,先求出A桶油现在的重量,再倒推出原有油的重量。随堂练习四: 两个书架一共放书360本,如果从第一个书架取出放入第二个书架,则第一个书架上的书与第二个书架上的书的本数比是911.两个书架上原来各有多少本书?例5:

22、水果批发部运来苹果、橘子、和香蕉三种水果。出售时,苹果、橘子、和香蕉每千克的价格比为456.已知上周这三种水果售出数量比是324,又知苹果共卖得2160元,这个批发部上周出售水果的收入是多少元?分析与解 根据这三种水果的单价比为456.,以及数量比为324,可以先计算出这三种水果的总价比(43)(52)(64)=121024=6512由此可知,苹果的总价占售出水果总价的。因此售出水果的总价很容易求出。(43)(52)(64)=65122160=8280(元)答:这个批发部上周售出水果的总价为8280元。方法点评 解答这个题的关键是根据三种水果的单价比和数量比,先求出总价比,进而求出总价。随堂练

23、习五: 甲乙两个三角形,他们的底边之比为23,高之比为35.已知甲三角形的面积比乙三角形的面积小30平方厘米,求这两个三角形的面积。拓展训练1、一个长方体,长、宽、高的比是437.已知这个长方体的底面周长为56厘米,这个长方体的体积是多少立方厘米?2、甲数和乙数的比是23,乙数和丙数的比是45,甲数和丙数的比是多少?3、大、小两筐苹果共60千克,把大筐苹果重量的放入小筐后,大、小两筐苹果的重量比为23。大、小两筐原来各装多少千克苹果?4、商店现有梨、苹果、橘子若干千克,重量比为495.两天后,三种水果工卖出780千克,这时苹果还余50千克,梨还余20千克,橘子余下的是卖出的。原来三种水果各有多

24、少千克?5、学校田径队和游泳队共有32个男生、18个女生。已知田径队中男生人数与女生人数的比为53,游泳队中男生人数与女生人数的比是21,那么,田径队中女生有多少人?6、商店购进奶糖和酥糖这两种糖果所用钱数之比是21,已知奶糖每千克6元,酥糖每千克2元。如果把这两中堂混在一起成为什锦糖,那么,什锦糖的成本为每千克多少元?第五讲 分数第应用题(一)例1:一池水,第一天放出60吨,第二天放出65吨,剩下的水比原来这池水的少5吨。原来水池有多少吨?分析与解 这道题把原来这池水的吨数看作单位“1”,但具体数量与分率之间的关系却不容易看出,关键是剩下的水不是正好占单位“1” 的。我们可以假设第二天少放出

25、5吨水,那么剩下的水 就正好占单位“1” 的,两天共用去(60+65-5)吨的水,的对应分率就是(1)。(60+65-5)(1)=120=160(吨)答:原来水池有水160吨。随堂练习一: 一批稻谷放在两个粮库中,甲库所存稻谷的数量是乙库的,后来向甲库运进45吨,向乙库运进36吨,这时两库稻谷重量相等。甲库原有稻谷多少吨?例2:五年级的图书窗内有文艺书、科技书、故事书共96本。已知科技书是故事书的,是文艺术的,三种图书各有多少本?分析与解 这道题出现了两个不同的单位“1”,因而 ,我们需要将他转化成同一个单位“1”。把故事书看作单位“1”,科技书的对应分率就是,文艺书的对应分率是=故事书的本数

26、:96(1+)=96=36(本)科技书的本数:36=12(本) 文艺书的本数:12=48(本)答:故事书有36本,科技书有12本,文艺书有48本方法二:这道题也可以把科技书的本数看作单位“1”,故事书的对应分率就是1=3文艺书的对应分率就是1=496(1+1+1)=968=12(本)科技书的本数12=36(本)故事书的本数 12=48(本)文艺书的本数答:(略)方法点评: 在分数应用题中,如果遇到单位“1”不同时,就要注意将各分率进行转化,将这些分率转化成同一个单位“1”的几分之几或几倍,然后再去寻找分率与具体数量之间的对应关系。随堂练习二: 某校四、五、六年级共有学生580人,四年级的学生人

27、数是五年级的,五年级的人数是六年级的。三个年级各有多少人?拓展训练1、小明和小虎都是小集邮迷,他们两人共有邮票285张,现在小明拿出自已邮票的,现在小虎拿出15张,送到少年宫参加邮票展,两人剩下的邮票张数正好相等。两人原来有多少张邮票?2、某厂男职工比全厂职工总数的还多60人,女职工的人数是男职工的。这个厂公有制共多少人?3、东方小学六年级有23人、五年级有18人参加数学竞赛,结果五、六年级的获奖人数相等,五年级未获奖人数比六年级少。两个年级共有多少人获奖?4、甲乙丙三人合作一批机器零件,甲做零件的歌数是乙丙的,乙做零件的个数是甲丙的,丙做了450个,这批零件有多少个?5、国庆节前,两位工人给

28、某个城市装彩灯,他们工作了5天后,还剩下需装彩灯数量的,这时若再增加200只彩灯的装饰任务,才正好够两人一天的工作量。原来准备装彩灯多少只?第6讲 分数应用题(二)例一: 人民商场运来空调和冰箱共240台,其中空调占。后来有几台空调因质量问题要退回厂家,这时空调台数占总数的。退回空调多少台?分析与解 根据题意题目中空调的数量在变化,而并向的数量是不变量。我们可以先求出冰箱的台数;240(1-)=240=144(台)根据“这时空调台数占总数的”,我们把现在空调与冰箱的总数看作单位“1”,冰箱占总数的(1-),这样我们可以求出现在空调与冰箱的总数:144(1-)=234(台)最后用原来空调与冰箱的

29、总数减去现在空调与冰箱的总数,就是退回的空调台数;240-234=6(台)答:退回空调6台。随堂练习一: 幼儿班图书角共有连环画与漫画书216本,其中连环画占。后来又卖来一些连环画,这时连环画占图书总数的。后来又买来多少本连环画?例2:由甲乙两个车间,驾车简单公认的人数是乙车间的。如果从乙车间调12人到甲车间,甲车间的人数是乙车间的。原来甲乙两个车间各有人多少人?分析与解 根据题意,原来甲车间公认的人数是乙车间的,从乙车间调12人到甲车间,甲车间的人数是乙车间的,说明甲乙两个车间的人数都发生了变化,甲乙两个车间的总人数是不变的。因此可以把甲乙两个车间的总人数看作单位“1”,则原来甲车间人数占两

30、个车间总数的,同时把甲车间的人数是乙车间的转化成现在甲车间的人数占两个车间总数的。根据题目中所说“从乙车间调12人到甲车间”,可知甲车间现在的人数比原来的人数多12人,它的对应分率应是(-)就可以求出辆车间的总人数,再求两车间的人数就简单了。12(-)=12=432(人)两车间人数432=180(人)甲车间人数432-180=252(人)乙车间人数答:原来甲车间人数有180人,乙车间的人数有252人。方法点评; 在一些分数应用题中,题目中会出现一些变化量,造成单位“1”的量无法确定,未结题增加了难度,这种情况下,我们要善于抓住其中的“不变量”,抓住“不变量”进行分析。通常分两种情况:(1)先求

31、出不变量,然后利用这个不变量作为“桥梁”进行解答;(2)、一步变量作为单位“1”,把题目得分率全部转化成以不变量作单位1”然后在寻找对应关系进行解答。随堂练习二: 修一条水渠,已修的米数是剩下的,如果再修50米,那么已修的米数就是剩下的。这条渠去长多少米?拓展训练1、水果店运来苹果和梨共360箱,其中苹果占。后来由有运来几箱 苹果,这时苹果占两种水果总箱数的。又运来苹果有多少箱?2、师徒两人合作280个零件,徒弟做了自己人物的,师傅做了自己任务的,这时还剩下64个零件没有做。师徒两人原来各需做多少个零件?3、甲、乙两校共有60人参加小学生数学竞赛,甲校参加人数的比乙校参加人数的多6人,甲、乙两

32、校各有多少人参加竞赛?4、某次会议,昨天参加会议的代表共2100人,今天男代表减少,女代表增加了。今天共2016人出席会议,那么昨天参加会议的男代表共有多少人?5、兄弟两人各有邮票若干张,现在爸爸又买回18张邮票。如果全部给哥哥,那么哥哥的邮票张数是弟弟的2倍;如果全部给弟弟,则弟弟的邮票张数是哥哥的。两人原来各有多少张邮票?第7讲 列方程解分数应用题专题简析:用算术方法解应用题,虽然有利于提高思维的灵活性,但使用算术方法解应用题时,总是把未知数置于特殊的位置,使解题思路和方法受到很大限制,有时解题很困难。这时,我们可以选择用方程解答应用题,用字母表示未知数,未知数直接参加列式和运算,思维直接

33、,解法灵活。用列方程的解题方法,往往能获得事半功倍的效果,这样取得成功的机会会更多一些。例1:某工厂有职工980人,其中女职工的人数比男职工的多28人。这个工厂的男、女职工各多少人?分析与解 这题中有两个等量关系,男职工人数+女职工人数=980人,女职工人数=男职工人数+28人。在解答分数应用题时,通常设单位“1”的量为x,这里可以设男职工人数为x,那么女职工人数就可以根据第二个数量关系表示为(x+28),再分别把男职工人数和女职工人数带入第一个等量关系,列出方程,求出结果。解:设这个工厂有男职工x人,则女职工有(x+28)人。 X+x+28=9801X+28=980X=680980680=3

34、00(人)答:这个工厂有男职工680人,女职工300人。方法点评:在用方程解答应用题时,我们应注意以下几点:(1)一般设单位“1”的量为X;(2)找准等量关系列方程。随堂练习一:师徒两人合作一批零件,完工时,徒弟做的零件个数比师父的少10个。已知师傅比徒弟多做了50个零件,师徒两人个做了多少个零件? 例2:商场运来空调与彩电共152台,卖出彩电的和5台空调空调后,剩下的空调与彩电台数正好相等。商场运来空调与彩电各多少台?分析与解 由于题目中彩电台数是单位“1”那么可以设彩电台数为x,则空调台数为(152x)台。根据“剩下的空调与彩电台数正好相等”,我们可以列方程来解答解:设商场运来彩电x台,则

35、空调台数为(152x)台。Xx=152x5=147x=147X=7715277=55(台)答:商场运来彩电77台,空调75台。随堂练习二: 甲乙两桶油共重44千克,甲桶用去它的,乙桶又倒入10千克后,先在两桶油的重量相等,甲桶原有油多少千克?拓展训练1、两筐橘子,甲筐比乙筐多21千克,若从甲筐取出18千克橘子给乙筐,则甲筐重量是乙筐的。乙筐原有橘子多少筐?2、甲乙两人共储蓄1000元,甲取出240元乙又存入80元,这时乙储蓄的钱数正好是甲的。原来乙储蓄了多少元钱?3、学校田径队中,女队员人数的等于男队员人数的。已知男队员比女队员多6人,田径队中男、女队员各有多少人?4、六(1)班有学生50人,

36、当男生的和5个女生离开后,剩下的男、女生人数相等,那么这个班原有多少个男生?5、某校上学期男、女生共有500人,本学期有的男生转学,而女生又增加了。这学期共有学生490人。求这学期男、女生的人数。第8讲 百分数应用题百分数应用题与分数应用题一样,其中的百分数表示的是两个量之间的倍数关系,它的具体大小也取决于单位“1”的大小。因此,解答白分数应用题也需要首先弄清谁是单位“1”,这同样是解决百分数应用题的关键。例1:六(1)班男生人数比女生人数多25,女生数比男生人数少百分之几?分析与解 男生比女生多25%,就是男生比女生多女生的25%。把女生看做单位“1”男生就是女生的1+25%=125%。求女

37、生人数比男生少百分之几,就是求女生比男生少的人数占男生恩数的百分之几,应该用女生比男生少的人数除以男生人数。25%(1+25%)=20% 方法点评:解决求一个数是另一个数百分之几的应用题时,关键是要区分清谁是谁的百分之几。随堂练习一: 果园里的苹果树的棵树比桃树多,桃树比苹果树的棵数少百分之几?例2: 某商店同时卖出两件商品,售价都是60元,但其中一件赚20%,另一件亏本20%。这个商店卖出这两件商品是赚钱,还是亏本?分析与解 要知道商店卖出这两件商品是赚钱还是亏本,必须要求这两件商品的成本是多少钱。一件商品赚了20%,是60元,是把这件商品的原价看作单位“1”,60元的对应分率是(1+20%

38、)可以求出原价。另一件商品亏本20%以后,是60元,是把这件商品的原价看作单位“1”,60元的对应分率是(120%)可以求出原价。所以:60(1+20%)=50(元)60(120%)=75(元)75+5060+60答:这个商店卖出这两件商品是亏本了。随堂练习二: 某商店同时卖出两件商品,售价都是100元,但其中一件赚25% ,另一件亏本25%。这个商店卖出这两件商品是亏本了,还是赚钱了?拓展训练1、商店卖出甲乙两种电脑的价格不同,如果甲种 电脑的价格提高20%,乙种电脑的价格降低10%,那么两种电脑的价格相同。原来甲种电脑的价格是乙种电脑的百分之几?2、国家规定,个人存款应缴20%的利息税。张

39、叔叔今天从银行取出一年前的存款,缴纳了18元的利息税,已知银行一年定期存储的年历率为2.25%。那么,张叔叔一年前存入银行多少钱?3、商场购进一件商品,加上15%的利润作为定价。可是一直无人购买,只好降低定价的20%出售。结果亏了200元,商场购进这件件商品花了多少钱?4、某商店进了一批茶叶,分一级品和二级品,二级品的进价比一极品便宜20%。按优质优价的原则,一级品按20%的利润定价,二级品按15%的利润定价,一级品茶叶比二极品茶叶每500克贵70元。一级品茶叶的进价是每500克多少元?5、甲公司有600人,其中技术人员占5%;乙公司有400人,技术人员占20%。为了支援甲公司进行技术革新,现

40、决定从乙公司派遣若干名技术员到甲公司传授技术,同时甲公司派出同样的人数到乙公司学习技术。巧的是,这样调遣以后,现在两个公司技术人员所占百分比相同。乙公司派遣了多少名技术人员到甲公司传授技术/0020第9讲 单位“1”的妙用专题简析:在分数、百分数应用题中,常常碰到“1”,例如:一本书读了,又读了余下的,还剩下300页,问这本书共有多少页?像这样的题目出现了不同的两个单位“1”,对于同学们来说非常熟悉的,但“1”在应用题中的作用,可能同学们还不太了解,在一些复杂的分数应用题中,往往出现大小不同的单位的几个“1”,由于单位“1”的大小不同,所代表的几分之几的数量也就不同,在解题时要特别注意,下面请同学看看单位“1”在各种题目中的妙用。例1 一组割草的人要把两片草地的草割掉,大的一片比小的一片大一倍,全体组员先用半天的时间割大的一片草地,到下午他们对半分开,一半仍留在大草地上,到傍晚时正好把大草地割完,另一半就到小草地上去割,到傍晚时还剩下一小块,这一小块由一人去割,正好一天割完,问这个组共有多少人?分析与解:这道题实际上暗含着每个的工作效率这个条件,要求共有多少人,关键就是要求出一个人的工作效率,也就是一个人一天的工作量,还要求出全组人一天的工作量,而这些仿照工程问题是不难求出的。解:设大片草地

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服