1、2019-2020年中考数学试卷分类汇编:与函数有关的选择题压轴题2014年与函数有关的选择题压轴题,考点涉及:一次函数性质;反比例函数性质,反比例函数比例系数k的几何意义及不等式的性质,;曲线上点的坐标与方程的关系;二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与一元二次方程的关系,二次函数与不等式;相似三角形的判定和性质;轴对称的性质.数学思想涉及:数形结合;化归;方程.现选取部分省市的2014年中考题展示,以飨读者.【题1】(2014济宁第8题)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”请
2、根据你对这句话的理解,解决下面问题:若m、n(mn)是关于x的方程1(xa)(xb)=0的两根,且ab,则a、b、m、n的大小关系是()AmabnBamnbCambnDmanb【考点】:抛物线与x轴的交点【分析】:依题意画出函数y=(xa)(xb)图象草图,根据二次函数的增减性求解【解答】:解:依题意,画出函数y=(xa)(xb)的图象,如图所示函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(ab)方程1(xa)(xb)=0转化为(xa)(xb)=1,方程的两根是抛物线y=(xa)(xb)与直线y=1的两个交点由mn,可知对称轴左侧交点横坐标为m,右侧为n由抛物线开口向上,则在
3、对称轴左侧,y随x增大而减少,则有ma;在对称轴右侧,y随x增大而增大,则有bn综上所述,可知mabn故选A【点评】:本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算【题2】(2014年山东泰安第20题)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个【
4、分析】:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解【解答】:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a0;又x=0时,y=3,所以c=30,所以ac0,故(1)正确;二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,当x1.5时,y的值随x值的增大而减小,故(2)错误;x=3时,y=3,9a+3b+c=3,c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b1)x+c=0的一个根,故(3)正确;x=1时,ax2+bx+c=1,x=1时,ax2+(b1)x+c=0,x=3时,
5、ax2+(b1)x+c=0,且函数有最大值,当1x3时,ax2=(b1)x+c0,故(4)正确故选B【点评】:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度熟练掌握二次函数图象的性质是解题的关键【题3】(2014年山东烟台第11题)二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x1时,y的值随x值的增大而增大其中正确的结论有()A1个B2个C3个D4个【分析】:根据抛物线的对称轴为直线x=2,则有4a+b=0;观察函数图象得到当x=3时
6、,函数值小于0,则9a3b+c0,即9a+c3b;由于x=1时,y=0,则ab+c=0,易得c=5a,所以8a+7b+2c=8a28a10a=30a,再根据抛物线开口向下得a0,于是有8a+7b+2c0;由于对称轴为直线x=2,根据二次函数的性质得到当x2时,y随x的增大而减小【解答】:抛物线的对称轴为直线x=2,b=4a,即4a+b=0,所以正确;当x=3时,y0,9a3b+c0,即9a+c3b,所以错误;抛物线与x轴的一个交点为(1,0),ab+c=0,而b=4a,a+4a+c=0,即c=5a,8a+7b+2c=8a28a10a=30a,抛物线开口向下,a0,8a+7b+2c0,所以正确;
7、对称轴为直线x=2,当1x2时,y的值随x值的增大而增大,当x2时,y随x的增大而减小,所以错误故选B【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac
8、0时,抛物线与x轴没有交点【题4】(2014威海第11题)已知二次函数y=ax2+bx+c(a0)的图象如图,则下列说法:c=0;该抛物线的对称轴是直线x=1;当x=1时,y=2a;am2+bm+a0(m1)其中正确的个数是( ) A1B2C3D4 【考点】:二次函数图象与系数的关系【分析】:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【解答】:解:抛物线与y轴交于原点,c=0,故正确;该抛物线的对称轴是:,直线x=1,故正确;当x=1时,y=2a+b+c,对称轴是直线x=1,b=2a,又c=0,y=4a,故错误;x=m对应的函数值
9、为y=am2+bm+c,x=1对应的函数值为y=ab+c,又x=1时函数取得最小值,ab+cam2+bm+c,即abam2+bm,b=2a,am2+bm+a0(m1)故正确故选:C【点评】:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定【题5】(2014宁波第12题)已知点A(a2b,24ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )A(3,7)B(1,7)C(4,10)D(0,10)【考点】:二次函数图象上点的坐标特征;坐标与图形变化-对称【分析】:把点A坐
10、标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可【解答】:解:点A(a2b,24ab)在抛物线y=x2+4x+10上,(a2b)2+4(a2b)+10=24ab,a24ab+4b2+4a8ab+10=24ab,(a+2)2+4(b1)2=0,a+2=0,b1=0,解得a=2,b=1,a2b=221=4,24ab=24(2)1=10,点A的坐标为(4,10),对称轴为直线x=2,点A关于对称轴的对称点的坐标为(0,10)故选D【点评】:本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的
11、变化对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键【题6】(2014温州第10题)如图,矩形ABCD的顶点A在第一象限,ABx轴,ADy轴,且对角线的交点与原点O重合在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k0)中k的值的变化情况是()A一直增大B一直减小C先增大后减小D先减小后增大【考点】:反比例函数图象上点的坐标特征;矩形的性质【分析】:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=ABAD
12、=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小【解答】:解:设矩形ABCD中,AB=2a,AD=2b矩形ABCD的周长始终保持不变,2(2a+2b)=4(a+b)为定值,a+b为定值矩形对角线的交点与原点O重合k=ABAD=ab,又a+b为定值时,当a=b时,ab最大,在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小故选C【点评】:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度根据题意得出k=ABAD=ab是解题的关键【题7】(2014年山东泰安第17题)已知函数y=(xm)(xn)(
13、其中mn)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()ABCD【分析】:根据二次函数图象判断出m1,n=1,然后求出m+n0,再根据一次函数与反比例函数图象的性质判断即可【解答】:由图可知,m1,n=1,所以,m+n0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合故选C【点评】:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键【题8】(2014.福州第10题)如图,已知直线分别与x轴,y轴交于A,B两点,与双曲线交于E,F两点
14、. 若AB=2EF,则k的值是【 】来 A B1 C D【考点】:1.反比例函数与一次函数交点问题;2.曲线上点的坐标与方程的关系;3.相似三角形的判定和性质;4.轴对称的性质.【题9】(2014. 泸州第12题)如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数y=x的图象被P截得的弦AB的长为,则a的值是()A4BCD【解答】:解:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=
15、AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B【点评】:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理和等腰直角三角形的性质2019-2020年中考数学试卷分类汇编:与圆有关的压轴题2014年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等.数学思想涉及:数形结合;分类讨论;化归;方程.现选取部分省市的2014年中考题展示,以飨读者.【题1】(2014年江苏南京,26题)如图,在RtABC中,ACB=90,A
16、C=4cm,BC=3cm,O为ABC的内切圆(1)求O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若P与O相切,求t的值【分析】:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值【解】:(1)如图1,设O与AB、
17、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CFO为ABC的内切圆,OFAC,OEBC,即OFC=OEC=90C=90,四边形CEOF是矩形,OE=OF,四边形CEOF是正方形设O的半径为rcm,则FC=EC=OE=rcm,在RtABC中,ACB=90,AC=4cm,BC=3cm,AB=5cmAD=AF=ACFC=4r,BD=BE=BCEC=3r,4r+3r=5,解得 r=1,即O的半径为1cm(2)如图2,过点P作PGBC,垂直为GPGB=C=90,PGACPBGABC,BP=t,PG=,BG=若P与O相切,则可分为两种情况,P与O外切,P与O内切
18、当P与O外切时,如图3,连接OP,则OP=1+t,过点P作PHOE,垂足为HPHE=HEG=PGE=90,四边形PHEG是矩形,HE=PG,PH=CE,OH=OEHE=1,PH=GE=BCECBG=31=2在RtOPH中,由勾股定理,解得 t=当P与O内切时,如图4,连接OP,则OP=t1,过点O作OMPG,垂足为MMGE=OEG=OMG=90,四边形OEGM是矩形,MG=OE,OM=EG,PM=PGMG=,OM=EG=BCECBG=31=2,在RtOPM中,由勾股定理,解得 t=2综上所述,P与O相切时,t=s或t=2s【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利
19、用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目【题2】(2014泸州24题)如图,四边形ABCD内接于O,AB是O的直径,AC和BD相交于点E,且DC2=CECA(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AFCD交CD的延长线于点F,若PB=OB,CD=,求DF的长【考点】:相似三角形的判定与性质;勾股定理;圆周角定理【分析】:(1)求出CDECAD,CDB=DBC得出结论(2)连接OC,先证ADOC,由平行线分线段成比例性质定理求得PC=,再由割线定理PCPD=PBPA求得半径为4,根据勾股定理求得AC=,再证明AFDACB,得,则可设FD=
20、x,AF=,在RtAFP中,求得DF=【解答】:(1)证明:DC2=CECA,=,CDECAD,CDB=DBC,四边形ABCD内接于O,BC=CD;(2)解:如图,连接OC,BC=CD,DAC=CAB,又AO=CO,CAB=ACO,DAC=ACO,ADOC,=,PB=OB,CD=,=PC=4又PCPD=PBPAPA=4也就是半径OB=4,在RTACB中,AC=2,AB是直径,ADB=ACB=90FDA+BDC=90CBA+CAB=90BDC=CABFDA=CBA又AFD=ACB=90AFDACB在RtAFP中,设FD=x,则AF=,在RTAPF中有,求得DF=【点评】:本题主要考查相似三角形的
21、判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是找准对应的角和边求解【题3】(2014济宁21题)阅读材料:已知,如图(1),在面积为S的ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r连接OA、OB、OC,ABC被划分为三个小三角形S=SOBC+SOAC+SOAB=BCr+ACr+ABr=(a+b+c)rr=(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,ABDC,AB=21,CD=11,AD=13,O1与O
22、2分别为ABD与BCD的内切圆,设它们的半径分别为r1和r2,求的值【考点】:圆的综合题【分析】:(1)已知已给出示例,我们仿照例子,连接OA,OB,OC,OD,则四边形被分为四个小三角形,且每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似仿照证明过程,r易得(2)(1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果但求内切圆半径需首先知道三角形各边边长,根据等腰梯形性质,过点D作AB垂线,进一步易得BD的长,则r1、r2、易得【解答】:(1)如图2,连接OA、OB、OC、ODS=SAOB+SBOC+SCOD+SAOD=+=,r=(2)如图3,过点D作DEAB于E,梯形A
23、BCD为等腰梯形,AE=5,EB=ABAE=215=16在RtAED中,AD=13,AE=5,DE=12,DB=20SABD=126, SCDB=66,=【点评】:本题考查了学生的学习、理解、创新新知识的能力,同时考查了解直角三角形及等腰梯形等相关知识这类创新性题目已经成为新课标热衷的考点,是一道值得练习的基础题,同时要求学生在日常的学习中要注重自我学习能力的培养【题4】(2014.福州20题)如图,在ABC中,B=45,ACB=60,点D为BA延长线上的一点,且D=ACB,O为ABC的外接圆.(1)求BC的长;(2)求O的半径.【解析】.(2)由(1)得,在RtACE中,EAC=30,EC=
24、,AC=.D=ACB,B=B,BACBCD. ,即.DM=4.O的半径为2.【考点】:1. 锐角三角函数定义;2.特殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.【题5】(2014.广州25题)如图7,梯形中,,,点为线段上一动点(不与点 重合),关于的轴对称图形为,连接,设,的面积为,的面积为(1)当点落在梯形的中位线上时,求的值;(2)试用表示,并写出的取值范围;(3)当的外接圆与相切时,求的值【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有:在中,有 在中, 又 解得:(2)如图2,交于点
25、,与关于对称,则有:,又 又与关于对称,(3)如图3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连接,得 则又解得:(舍去) 【题6】(2014湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PEPF交y轴于点E,设点F运动的时间是t秒(t0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F,经过M、E和F三点的抛物线的对称
26、轴交x轴于点Q,连接QE在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由【分析】:(1)连接PM,PN,运用PMFPNE证明,(2)分两种情况当t1时,点E在y轴的负半轴上,0t1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1t2时,当t2时,三角形相似时还各有两种情况,根据比例式求出时间t【解答】:证明:(1)如图,连接PM,PN,P与x轴,y轴分别相切于点M和点N,PMMF,PNON且PM=PN,PMF=PNE=90且NPM=90,PEPF,NPE=MPF=90M
27、PE,在PMF和PNE中,PMFPNE(ASA),PE=PF,(2)解:当t1时,点E在y轴的负半轴上,如图,由(1)得PMFPNE,NE=MF=t,PM=PN=1,b=OF=OM+MF=1+t,a=NEON=t1,ba=1+t(t1)=2,b=2+a,0t1时,如图2,点E在y轴的正半轴或原点上,同理可证PMFPNE,b=OF=OM+MF=1+t,a=ONNE=1t,b+a=1+t+1t=2,b=2a,(3)如图3,()当1t2时,F(1+t,0),F和F关于点M对称,F(1t,0)经过M、E和F三点的抛物线的对称轴交x轴于点Q,Q(1t,0)OQ=1t,由(1)得PMFPNE NE=MF=
28、t,OE=t1当OEQMPF=,解得,t=,当OEQMFP时,=,=,解得,t=,()如图4,当t2时,F(1+t,0),F和F关于点M对称,F(1t,0)经过M、E和F三点的抛物线的对称轴交x轴于点Q,Q(1t,0)OQ=t1,由(1)得PMFPNE NE=MF=t,OE=t1当OEQMPF=,无解,当OEQMFP时,=,=,解得,t=2,所以当t=,t=,t=2时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系【题7】(2014宁波26)木匠黄师傅用长AB=3,宽BC=2
29、的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0x1),圆的半径为y求y关于x的函数解析式;当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大 【考点】:圆的综合题
30、【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用AOMOFN后对应边成比例整理方程,进而可求r的值(3)类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度则选择最小跨度,取其,即为半径由EC为x,则新拼图形
31、水平方向跨度为3x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论已有关系表达式,则直接根据不等式性质易得方案四中的最大半径另与前三方案比较,即得最终结论【解答】:解:(1)方案一中的最大半径为1分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1(2)如图1,方案二中连接O1,O2,过O1作O1EAB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为O与AB,BF的切点方案二:设半径为r,在RtO1O2E中,O1O2=2r,O1E=BC=2,O2E=ABAO1CO2=32r,(2r)2=22+(32r)2,解得 r=方案三:设半径为
32、r,在AOM和OFN中,AOMOFN,解得 r=比较知,方案三半径较大(3)方案四:EC=x,新拼图形水平方向跨度为3x,竖直方向跨度为2+x类似(1),所截出圆的直径最大为3x或2+x较小的1当3x2+x时,即当x时,r=(3x);2当3x=2+x时,即当x=时,r=(3)=;3当3x2+x时,即当x时,r=(2+x)当x时,r=(3x)(3)=;当x=时,r=(3)=;当x时,r=(2+x)(2+)=,方案四,当x=时,r最大为1,方案四时可取的圆桌面积最大【点评】:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,
33、但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习【题8】(2014苏州28)如图,已知l1l2,O与l1,l2都相切,O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若O与矩形ABCD沿l1同时向右移动,O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图,连接OA、AC,则OAC的度数为105;(2)如图,两个图形移动一段时间后,O到达O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过
34、程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d2时,求t的取值范围(解答时可以利用备用图画出相关示意图)【考点】:圆的综合题【分析】:(1)利用切线的性质以及锐角三角函数关系分别求出OAD=45,DAC=60,进而得出答案;(2)首先得出,C1A1D1=60,再利用A1E=AA1OO12=t2,求出t的值,进而得出OO1=3t得出答案即可;(3)当直线AC与O第一次相切时,设移动时间为t1,当直线AC与O第二次相切时,设移动时间为t2,分别求出即可【解答】:解:(1)l1l2,O与l1,l2都相切,OAD=45,AB=4cm,AD=4cm,CD=4cm,AD=
35、4cm,tanDAC=,DAC=60,OAC的度数为:OAD+DAC=105,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设O1与l1的切点为E,连接O1E,可得O1E=2,O1El1,在RtA1D1C1中,A1D1=4,C1D1=4,tanC1A1D1=,C1A1D1=60,在RtA1O1E中,O1A1E=C1A1D1=60,A1E=,A1E=AA1OO12=t2,t2=,t=+2,OO1=3t=2+6;(3)当直线AC与O第一次相切时,设移动时间为t1,如图,此时O移动到O2的位置,矩形ABCD移动到A2B2C2D2的位置,设O2与直线l1,A2C2分别相切于
36、点F,G,连接O2F,O2G,O2A2,O2Fl1,O2GA2G2,由(2)得,C2A2D2=60,GA2F=120,O2A2F=60,在RtA2O2F中,O2F=2,A2F=,OO2=3t,AF=AA2+A2F=4t1+,4t1+3t1=2,t1=2,当直线AC与O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,+2(2)=t2(+2),解得:t2=2+2,综上所述,当d2时,t的取值范围是:2t2+2【点评】:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用
37、分类讨论以及数形结合t的值是解题关键【题9】(2014泰州25题)如图,平面直角坐标系xOy中,一次函数y=x+b(b为常数,b0)的图象与x轴、y轴分别相交于点A、B,半径为4的O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方(1)若直线AB与有两个交点F、G求CFE的度数;用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b5,在线段AB上是否存在点P,使CPE=45?若存在,请求出P点坐标;若不存在,请说明理由【考点】:圆的综合题【分析】:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行CFE=45,(2)作OMAB点M,连接OF,利用两条直线垂直相交求出交点
38、M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使CPE=45,再利用两条直线垂直相交求出交点P的坐标,【解答】:解:(1)连接CD,EA,DE是直径,DCE=90,CODE,且DO=EO,ODC=OEC=45,CFE=ODC=45,(2)如图,作OMAB点M,连接OF,OMAB,直线的函数式为:y=x+b,OM所在的直线函数式为:y=x,交点M(b,b)OM2=(b)2+(b)2,OF=4,FM2=OF2OM2=42(b)2(b)2,FM=FG,FG2=4FM2=442(b)2(b)2=64b2=64(1b2),直线AB与有两
39、个交点F、G4b5,(3)如图,当b=5时,直线与圆相切,DE是直径,DCE=90,CODE,且DO=EO,ODC=OEC=45,CFE=ODC=45,存在点P,使CPE=45,连接OP,P是切点,OPAB,OP所在的直线为:y=x,又AB所在的直线为:y=x+5,P(,)【点评】:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系【题10】(2014年江苏徐州28) 如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EGEF,EG与圆O相交于点G,连接C
40、G(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;求点G移动路线的长【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质【分析】:(1)只要证到三个内角等于90即可(2)易证点D在O上,根据圆周角定理可得FCE=FDE,从而证到CFEDAB,根据相似三角形的性质可得到S矩形ABCD=2SCFE=然后只需求出CF的范围就可求出S矩形ABCD的范围根据圆周角定理和矩形的性质可证到GDC=
41、FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可【解答】:解:(1)证明:如图1,CE为O的直径,CFE=CGE=90EGEF,FEG=90CFE=CGE=FEG=90四边形EFCG是矩形(2)存在连接OD,如图2,四边形ABCD是矩形,A=ADC=90点O是CE的中点,OD=OC点D在O上FCE=FDE,A=CFE=90,CFEDAB=()2AD=4,AB=3,BD=5,SCFE=()2SDAB=34=S矩形ABCD=2SCFE=四边形EFCG是矩形,FCEGFCE=CEGGDC=CEG,FCE=FDE,GDC=FDEFDE+CDB=90,GDC+CDB=90GDB=