资源描述
2022-2023年部编版九年级数学下册期中测试卷(带答案)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的倒数是( )
A. B. C. D.
2.若二次根式有意义,则x的取值范围是( )
A.x> B.x≥ C.x≤ D.x≤5
3.若正多边形的一个外角是,则该正多边形的内角和为( )
A. B. C. D.
4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
5.已知am=3,an=4,则am+n的值为( )
A.7 B.12 C. D.
6.若,则的值为( )
A. B.2 C. D.4
7.下列各曲线中表示y是x的函数的是( )
A. B. C. D.
8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )
A.40° B.50° C.60° D.80°
9.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于( )
A.6米 B.6米 C.3米 D.3米
10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
二、填空题(本大题共6小题,每小题3分,共18分)
1.计算(-)×+2的结果是_____________.
2.分解因式:x3﹣16x=_____________.
3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.
4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.
5.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是__________.
6.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__________.
三、解答题(本大题共6小题,共72分)
1.解分式方程:
2.先化简,再求值:,其中.
3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠EAC=60°,求AD的长.
5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:
请根据统计图的信息,解答下列问题:
(1)补全频数分布直方图,并求扇形统计图中扇形对应的圆心角度数;
(2)成绩在区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.
6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、C
2、B
3、C
4、D
5、B
6、D
7、D
8、D
9、A
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、
2、x(x+4)(x–4).
3、2
4、42
5、
6、
三、解答题(本大题共6小题,共72分)
1、x=3
2、3.
3、(1)y=﹣x2+2x+3;(2)P ( ,);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
4、(1)略;(2)AD=.
5、(1)补图见解析;50°;(2).
6、(1)4元或6元;(2)九折.
7 / 7
展开阅读全文