资源描述
(完整word)标准遗传算法 c++源程序
#include〈stdio.h>
#include<stdlib.h>
#include<time.h>
#include<fstream。h〉
#include<windows。h〉
#define POPSIZE 500
#define MAXIMIZATION 1
#define MINIMIZATION 2
#define random(x) (rand()%(x))
#define Cmax 100 /*最大值函数适应度的设置*/
#define Cmin 0 /*最小值函数适应度的设置*/
#define LENGTH1 10
#define LENGTH2 10
#define CHROMLENGTH LENGTH1+LENGTH2
int FunctionMode=MAXIMIZATION;
/*optimization type即函数类型,是求最大值函数还是最小值函数*/
int a=100;
int PopSize=80;
int MaxGeneration=200;
double Pc=0。6;
double Pm=0.001;
struct individual
{
char chrom[CHROMLENGTH+1];
double value;
double fitness;
};
int generation;
int best_index;
int worst_index;
struct individual bestindividual;
struct individual worstindividual;
struct individual currentbest;
struct individual population[POPSIZE];
void GenerateInitialPopulation(void);
void GenerateNextPopulation(void);
void EvaluatePopulation(void);
long DecodeChromosome(char *,int,int);
void CaculateObjectValue(void);
void CaculateFitnessValue(void);
void FindBestAndWorstIndividual(void);
void PerformEvolution(void);
void SelectionOperator(void);
void CrossoverOperator(void);
void MutationOperator(void);
void OutputTextReport(void);
void main()
{
srand((unsigned)time(NULL)); //随时间而改变随机数
generation=0;
GenerateInitialPopulation();
EvaluatePopulation();
while(generation<MaxGeneration)
{
generation++;
GenerateNextPopulation();
EvaluatePopulation();
PerformEvolution();
OutputTextReport();
}
}
void GenerateInitialPopulation(void)
{
int i,j;
for(i=0;i〈PopSize;i++)
{
for(j=0;j<CHROMLENGTH;j++)
{
population[i].chrom[j]=(random(10)<5)?'1':’0';
}
population[i].chrom[CHROMLENGTH]=’\0';
}
}
void GenerateNextPopulation(void)
{
SelectionOperator();
CrossoverOperator();
MutationOperator();
}
void EvaluatePopulation(void)
{
CaculateObjectValue();
CaculateFitnessValue();
FindBestAndWorstIndividual();
}
long DecodeChromosome(char *string,int point,int length)
{
int i;
long decimal=0;
char *pointer;
for(i=0,pointer=string+point;i<length;i++,pointer++)
{
decimal+=(*pointer—'0')<〈(length—1—i);
}
return(decimal);
}
void CaculateObjectValue(void)
{
int i;
long temp1,temp2;
double x1,x2;
for(i=0;i<PopSize;i++)
{
temp1=DecodeChromosome(population[i]。chrom,0,LENGTH1);
temp2=DecodeChromosome(population[i].chrom,LENGTH1,LENGTH2);
x1=4.096*temp1/1023。0-2。048;
x2=4.096*temp2/1023。0—2。048;
population[i]。value=100*(x1*x1—x2)*(x1*x1-x2)+(1—x1)*(1-x1);
}
}
void CaculateFitnessValue(void)
{
int i;
double temp;
for(i=0;i<PopSize;i++)
{
if(FunctionMode==MAXIMIZATION)
{
if((population[i].value+Cmin)>0。0)
{
temp=Cmin+population[i]。value;
}
else temp=0.0;
}
if(FunctionMode==MINIMIZATION)
{
if(population[i]。value〈Cmax)
{
temp=Cmax-population[i]。value;
}
else temp=0.0;
}
population[i].fitness=temp;
}
}
void FindBestAndWorstIndividual(void)
{
int i;
double sum=0。0;
bestindividual=population[0];
worstindividual=population[0];
for(i=1;i〈PopSize;i++)
{
if(population[i]。fitness〉bestindividual。fitness)
{
bestindividual=population[i];
best_index=i;
}
if(population[i]。fitness〈worstindividual.fitness)
{
worstindividual=population[i];
worst_index=i;
}
sum+=population[i]。fitness;
}
if(generation==0) currentbest=bestindividual;
else
{
if(bestindividual。fitness>currentbest。fitness) currentbest=bestindividual;
}
}
void PerformEvolution(void)
{
if(bestindividual。fitness>currentbest.fitness) currentbest=population[best_index];
else population[worst_index]=currentbest;
}
void SelectionOperator(void)
{
int i,index;
double p;
double sum=0。0;
double cfitness[POPSIZE];
struct individual newpopulation[POPSIZE];
for(i=0;i<PopSize;i++) sum+=population[i]。fitness;
for(i=0;i〈PopSize;i++) cfitness[i]=population[i]。fitness/sum;
for(i=1;i<PopSize;i++) cfitness[i]=cfitness[i-1]+cfitness[i];
for(i=0;i〈PopSize;i++)
{
p=(rand())/(double)(RAND_MAX);;
index=0;
while(p>cfitness[index]) index++;
newpopulation[i]=population[index];
}
for(i=0;i〈PopSize;i++) population[i]=newpopulation[i];
}
void CrossoverOperator(void)
{
int i,j;
int index[POPSIZE];
int point,temp;
double p;
char ch;
for(i=0;i〈PopSize;i++) index[i]=i;
for(i=0;i<PopSize;i++)
{
point=random(PopSize-i);/*random(PopSize-1)=rand()%(PopSize—1)*/
temp=index[i];
index[i]=index[point+i];
index[point+i]=temp;
}
/*循环实现种群内随机两两交换打乱种群顺序*/
for(i=0;i〈PopSize;i+=2)
{
p=(rand())/(double)(RAND_MAX);;
if(p〈Pc)
{
point=rand()%(CHROMLENGTH-1)+1;//random(CHROMLENGTH-1)+1;
for(j=point;j<CHROMLENGTH;j++)
{
ch=population[index[i]]。chrom[j];
population[index[i]].chrom[j]=population[index[i+1]]。chrom[j];
population[index[i+1]].chrom[j]=ch;
}
}
}
}
void MutationOperator(void)
{
int i,j;
double p;
for(i=0;i〈PopSize;i++)
{
for(j=0;j〈CHROMLENGTH;j++)
{
p=(rand())/(double)(RAND_MAX);;
if(p〈Pm)
{
population[i]。chrom[j]=(population[i]。chrom[j]=='0’)?'1’:'0’;
}
}
}
}
void OutputTextReport(void)
{
int i=0;
double average;
fstream kan_table;
kan_table。open(”f:\\kan_table。txt”,ios::app|ios::out);
double sum;
sum=0。0;
for(i=0;i<PopSize;i++)
sum+=population[i].value;
average=sum/PopSize;
kan_table〈<”gen=”〈〈generation〈〈",”;
kan_table〈〈"ave=”<〈average<〈”,”;
kan_table<<”"<<currentbest.value〈〈",";
kan_table<<endl;
printf(”gen=%d,ave=%f,best=%f,",generation,average,currentbest。value);
printf(”chromosome=”);
for(i=0;i〈CHROMLENGTH;i++)
printf(”%c”,currentbest.chrom[i]);
printf(”\n”);
}
展开阅读全文