资源描述
2022-2023年部编版八年级数学下册期中考试题(必考题)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.若=﹣a,则a的取值范围是( )
A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3
2.(-)2的平方根是x,64的立方根是y,则x+y的值为( )
A.3 B.7 C.3或7 D.1或7
3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )
A.108° B.90° C.72° D.60°
4.若6-的整数部分为x,小数部分为y,则(2x+)y的值是( )
A.5-3 B.3 C.3-5 D.-3
5.如果,则a的取值范围是( )
A. B. C. D.
6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )
A.70° B.60° C.55° D.50°
7.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
8.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
A. B.
C. D.
9.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为( )
A. B.
C. D.
10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )
A.40° B.45° C.50° D.55°
二、填空题(本大题共6小题,每小题3分,共18分)
1.若是关于的完全平方式,则__________.
2.已知x,y满足方程组,则的值为__________.
3.若,则_________.
4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.
5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD的面积是_______。
6.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.
三、解答题(本大题共6小题,共72分)
1.解方程:
(1) (2)
2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值..
3.己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)若=﹣1,求k的值.
4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
5.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、A
2、D
3、C
4、B
5、B
6、A
7、D
8、C
9、C
10、C
二、填空题(本大题共6小题,每小题3分,共18分)
1、7或-1
2、-15
3、1
4、2≤a+2b≤5.
5、1.
6、7
三、解答题(本大题共6小题,共72分)
1、(1),;(2),.
2、x+2;当时,原式=1.
3、(1)k>﹣;(2)k=3.
4、(1)略;(2)4.
5、(1)①;②四边形是菱形,理由略;(2)四边形能是正方形,理由略,m+n=32.
6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.
6 / 6
展开阅读全文