资源描述
博兰图教育初三圆
一、选择题。
1、(2010南通) 如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是( )
A.1 B. C. D.2
2、(2010浙江嘉兴)如图,A、B、C是⊙O上的三点,
已知,则( )
A B C D
3、(2010湖南郴州)如图,是⊙的直径,为弦,于,则下列结论中不成立的是( )
A. B. C. D.
4、如图,PA、PB是O的切线,切点分别是A、B,如果∠P=60°,那么∠AOB等于( )
A.60° B.90° C.120° D.150°
5、(2010山东青岛市)如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC = 4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( ).
B
C
A
第5题图
A.相离 B.相切 C.相交 D.相切或相交
第3题
二、填空题。
6、(2010重庆綦江县)如图所示,A、B、C、D是圆上的点,∠1=68°,∠A=40°.则∠D=_______.
7、(2010 黄冈)如图,⊙O中, 的度数为320°,则圆周角∠MAN=____________.
8.(2010福建宁德)如图,在直径AB=12的⊙O中,弦CD⊥AB于M,且M是半径OB的中点,则弦CD的长是_______(结果保留根号).
第7题图
第6题图
·
A
B
C
D
O
M
第8题图
9、(2009年娄底)如图6,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC= .
第10题图
10、.(2010陕西西安)如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽为1.6米,则这条管道中此时最深为 米。
三、解答题。
11、(2010福建福州)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.
(1)求证:CB∥PD;
(2)若BC=3,sinP=,求⊙O的直径.
12、(2010广东中山)如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.
E
O
D
C
B
A
13、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.
14、如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C。
求:(1)∠ADC的度数;
(2)AC的长。
一、选择题(每小题3分,共33分)
图24—A—1
1.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为( )
A. B.
C. D.
2.如图24—A—1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是( )
A.4 B.6 C.7 D.8
3.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为( )
A.40° B.80° C.160° D.120°
4.如图24—A—2,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数( )
A.20° B.40° C.50° D.70°
图24—A—4
图24—A—3
图24—A—2
图24—A—5
5.如图24—A—3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )
A.12个单位 B.10个单位 C.1个单位 D.15个单位
6.如图24—A—4,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则
∠A等于( )
A.80° B.50° C.40° D.30°
7.如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为( )
A.5 B.7 C.8 D.10
8.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )
图24—A—6
A. B. C. D.
9.如图24—A—6,两个同心圆,大圆的弦AB与小圆相切于
点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆
组成的圆环的面积是( )
A.16π B.36π C.52π D.81π
10.在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为( )
A. B. C.2 D.3
图24—A—7
11.如图24—A—7,两个半径都是4cm的圆外切于点C,一
只蚂蚁由点A开始依A、B、C、D、E、F、C、G、A的顺
序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段
路径上不断爬行,直到行走2006πcm后才停下来,则蚂
蚁停的那一个点为( )
A.D点 B.E点 C.F点 D.G点
二、填空题(每小题3分,共30分)
12.如图24—A—8,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC= 。
13.如图24—A—9,AB、AC与⊙O相切于点B、C,∠A=50゜,P为⊙O上异于B、C的一个动点,则∠BPC的度数为 。
图24—A—8
图24—A—10
图24—A—9
14.已知⊙O的半径为2,点P为⊙O外一点,OP长为3,那么以P为圆心且与⊙O相切的圆的半径为 。
15.一个圆锥的底面半径为3,高为4,则圆锥的侧面积是 。
16.扇形的弧长为20πcm,面积为240πcm2,则扇形的半径为 cm。
17.如图24—A—10,半径为2的圆形纸片,沿半径OA、OB裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为 。
18.在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,R为半径作圆与斜边AB相切,则R的值为 。
19.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为 。
20.已知扇形的周长为20cm,面积为16cm2,那么扇形的半径为 。
图24—A—11
21.如图24—A—11,AB为半圆直径,O 为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。若AC=8cm,DE=2cm,则OD的长为 cm。
四.解答题()
23.如图24—A—13,AD、BC是⊙O的两条弦,且AD=BC,
求证:AB=CD。
图24—A—13
⌒
24.如图24—A—14,已知⊙O的半径为8cm,点A为半径OB的延长线上一点,射线AC切⊙O于点C,BC的长为,求线段AB的长。
图24—A—14
25.已知:△ABC内接于⊙O,过点A作直线EF。
(1)如图24—A—15,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):
① ;② ;③ 。
(2)如图24—A—16,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线。
图24—A—15 图24—A—16
4
展开阅读全文