资源描述
新人教版八年级数学下册期中考试题及答案【新版】
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的算术平方根为( )
A. B. C. D.
2.若关于x的不等式组的整数解共有4个,则m的取值范围是( )
A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7
3.已知:是整数,则满足条件的最小正整数( )
A.2 B.3 C.4 D.5
4.下列结论中,矩形具有而菱形不一定具有的性质是( )
A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直
5.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
6.已知关于x的不等式组的整数解共有5个,则a的取值范围是( )
A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<
7.实数在数轴上的位置如图所示,则化简结果为( )
A.7 B.-7 C. D.无法确定
8.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10° B.15° C.18° D.30°
9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为( )
A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)
10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )
A.SAS B.AAS C.ASA D.SSS
二、填空题(本大题共6小题,每小题3分,共18分)
1.若2x=5,2y=3,则22x+y=________.
2.若x2+kx+25是一个完全平方式,则k的值是____________.
3.,则的取值范围是________.
4.如图,将绕直角顶点C顺时针旋转,得到,连接AD,若,则________.
5.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.
6.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.
三、解答题(本大题共6小题,共72分)
1.解方程:
2.先化简,再求值:,其中a,b满足.
3.已知:关于x的方程,
(1)求证:无论k取任何实数值,方程总有实数根;
(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.
4.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD,
(1)求证:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的长.
5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.
(1)a= ,b= ,点B的坐标为 ;
(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;
(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.
6.某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.
(1)求该公司购买的、型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、D
3、D
4、C
5、C
6、B
7、A
8、B
9、B
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、75
2、±10.
3、
4、
5、.
6、7
三、解答题(本大题共6小题,共72分)
1、x=﹣3.
2、-1
3、(1)略;(2)△ABC的周长为5.
4、(1)略;(2)3.
5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.
6、(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.
5 / 5
展开阅读全文