1、南昌大学科技学院本科毕业设计(论文)开 题 报 告题 目江西某市行政办公楼设计专 业土木工程班级土木102班学生姓名余欣欣学号指导老师潘固村职 称中级职称南昌大学科技学院教务部制南昌大学科技学院本科毕业设计(论文)开题汇报一、 选题背景和意义:毕业设计是一个总结性教学步骤,是学生全方面系统地融汇所学理论知识和专业技能并利用于处理实际问题过程。经过本教学步骤,要加深学生对所学基础理论知识了解,培养学生综合分析和处理问题能力和设计创新精神,使学生得到相关单位工程建设从方案制订到施工组织全过程系统性训练。土木工程是建造各类工程设施科学技术统称。它既指工程建设对象,即建造在地上、地下、水中多种工程设施
2、,也指所应用材料、设备和所进行勘测、设计、施工、保养、维修等专业技术。伴随时代发展和科技进步,大家生活水品也在不停提升。而建筑是社会和科技发展所需“衣、食、住、行”之首。它在任何一个国家国民经济中全部占有举足轻重地位。作为土木工程专业本科毕业生,应该有从事土木工程设计能力,所以,正是因为有这么需要,学院为我们安排毕业设计。此次毕业设计题目是“万丽小区5号楼结构设计和工程量清单”。毕业设计要求我们在指导老师指导下,独立系统完成一项工程设计,处理和之相关全部问题,熟悉相关设计规范、手册、标准图和工程实践中常见方法,含有实践性、综合性强显著特点。所以毕业设计对于培养学生初步科学研究能力,提升其综合利
3、用所学知识分析问题、处理问题能力有着关键意义,除此之外还能培养组织管理能力、社交能力和实践应用能力,培养设计工作中实事求是、严格正确科学态度和作风,树立事业心和责任感。为立即跨出校门走上社会打好基础。二、 研究基础内容和拟处理关键问题: 1.研究内容结构设计部分方案合理,计算正确无误,计算书写工整,图面布局匀称,表示正确清楚,图面清洁。1. 依据建筑设计和结承重及抗震方面要求、场地地质条件、材料供给及施工技术条件等,合理进行结构及其构件(楼面板、屋面板、过梁等)选型和结构部署,应尽可能使计算简便,统一构件编号,确定构件定位尺寸,正确标注构件结构标高。2.计算时,应有正确计算简图,。选择合理构件
4、尺寸,清理荷载时一定要细心。不能多算也不能少算。内力计算步骤要完整。内力计算可手算也可用计算机计算。手算时可依据具体情况采取不一样得计算方法。进行内力组合,确定截面配筋。而且满足结构要求。施工图中,结构及构件尺寸标注要齐全,受力钢筋、箍筋及结构钢筋编号要清楚、正确。 受力钢筋锚固、连接及截断位置要清楚正确。 箍筋加密区及非加密区范围要具体正确。配置数量要正确。横断面选择位置及数量要合理3. 现浇楼梯设计时,梁式或板式楼梯自选,要有正确计算简图,构件截面尺寸要合理。内力计算及配筋要正确。施工图中,各构件代号、尺寸标注要齐全,配筋图要正确,结构标高要标注在对应位置。 、4. 现浇板设计计算应依据具
5、体情况考虑采取弹性理论或塑性理论。分清楚什么是单向板什么是双向板。板厚度要合理,受力筋(板底和板面)及非受力筋配置和标注要正确,并标注板底部及顶部结构标高。定位轴线、构件尺寸标注要齐全。、 5.连梁设计计算可考虑采取塑性理论。2.拟处理问题1. 建筑结构部署,在满足建筑功效、工艺和生产使用要求同时,努力争取平面和竖向形状简单、整齐,柱网对称、刚度合适、荷载分布均匀,结构传力简捷,构件受力明确。2. 搜集必需资料、图纸和现场情况.如工程场地情况,现场地下水位和土壤类别,南昌关键建材和人工、机械租赁价格信息和南昌市常见招标法规和文件。三、 研究方法和技术路线:对于选定课题,我们对她所以内容进行全方
6、面了解。了解这个课题在中国外研究情况,包含研究以取得结果及存在问题,了解这一课题所属理论体系等等。对课题全方面了解,能够让我们研究过程中少走很多弯路。确立研究主攻方向。在此次课题研究中我将会用到以下研究方法。文件研究法:分类阅读相关文件(包含文字、图形、符号、声频、视频等含有一定历史价值、理论价值和资料价值材料),得出通常性结论或发觉问题,寻求新思绪。 经验总结法:经过对实践活动中具体情况,进行归纳和分析,使之系统化、理论化,上升为经验一个方法。总结推广优异经验是人类历史上长久利用较为行之有效领导方法之一。所谓经验,是指在实践活动中取得知识或技能。因为这种知识或技能往往凭借个人或团体特定条件和
7、机遇而取得,带有偶然性和特殊性一面,所以,经验并非一定是科学。它需要理论研究者和实践者做一番总结、验证、提炼加工工作。总结经验通常在实践中取得良好效果后进行。在总结经验时,一定要树立正确指导思想,对经典要用马克思主义立场和见解进行分析判定,分清正确和错误、现象和本质、肯定和偶然。经验一定要见解鲜明、正确,现有优异性、科学性,又有代表性和普遍意义。 历史研究法:简而言之,历史研究就是以过去为中心研究,它经过对已存在资料深人研究,寻求事实,然后利用这些信息去描述、分析和解释过去过程,同时揭示目前关注部分问题,或对未来进行估计。案例研究法:中外学者尚无普遍公认、权威定义,通常认为,案例是对现实生活中
8、某一具表现象客观描述。教育案例是对教育活动中含有经典意义,能够反应教育一些内在规律或一些教学思想、原理具体教学事件描述、总结分析,它通常是课堂内真实小说,教学实践中碰到迷惑真实统计。对这些“真实统计”进行分析研究,寻求规律或产生问题根源,进而寻求处理问题或改善工作方法,或形成新研究课题。在案例法研究中,研究者本身洞察力是关键。 观察研究法:从对事物发展改变过程观察中获取所需信息,将其归纳整理并进行分析研究,形成新观念和认识,这就是观察研究法四、 研究总体安排和进度:第一周:方案设计,建筑外形。第二周:修改方案,绘制建筑图。第三周:完成建筑图正式图纸。第四、五周:标准层结构平面图(框架梁,连梁)
9、部署,现浇板荷载整理,内力及配筋计算。第六、七周:连梁荷载整理,内力及配筋计算。第八、九周:12榀框架荷载整理,内力及配筋计算。第十周:绘制框架配筋图、连梁配筋图。第十一、十二周:桩承载力计算,基础平面图部署、承台配筋计算及绘制。第十三、十四面:绘制标准层结构平面图,现浇楼梯结构计算及配筋图绘制,雨篷结构计算及配筋图绘制。第十五周:整理图纸,设计总说明及计算书。 五、 关键参考文件:1 混凝土结构设计规范 GB50010建筑结构荷载规范 GB50009建筑地基基础设计规范 GB50007建筑工程抗震设防分类标准 GB50223-建筑结构可靠度设计统一标准 GB50068-混凝土结构设计原理、混
10、凝土结构设计多层和高层建筑结构设计简明建筑结构静力设计手册 中国建筑工业出版社江西省结构标准图集及国家其它相关现行规范2 混凝土结构设计规范 GB50010建筑结构荷载规范 GB50009建筑地基基础设计规范 GB50007砌体结构设计规范 GB50003混凝土结构设计原理、混凝土结构设计混凝土结构计算手册3多层和高层建筑结构设计房屋建筑学教材建筑设计资料集1、2、3册江西省建筑标准图集建筑制图标准其它相关设计规范简明建筑结构静力设计手册 中国建筑工业出版社江西省结构标准图集及国家其它相关现行规范现用建筑施工教材建筑施工手册(上、中册),中国建筑工业出版社12 Mita A and Yokoi
11、 I().Fiber Bragg Grating Accelerometer for Building and Civil InfrastructureC.Procof the SPIE Vo1 4330Sma rt Systems for Bridges,Structures,and Highways,PP479-48613 R H Wood,Plastic and elastic design of slabs and plateM.London:Thames and Hudson,1961Assessment of European seismic design proceduresfo
12、r steel framed structuresA.Y. Elghazouli1 Introduction Although seismic design has beneted from substantial developments in recent years, the need to offer practical and relatively unsophisticated design procedures inevitably results in various simplications and idealisations. These assumptions can,
13、 in some cases, have advert implications on the expected seismic performance and hence on the rationale and reliabil- ity of the design approaches. It is therefore imperative that design concepts and application rules are constantly appraised and revised in light of recent research ndings and improv
14、edunderstanding of seismic behaviour. To this end, this paper focuses on assessing the under- lying approaches and main procedures adopted in the seismic design of steel frames, with emphasis on European design provisions. In accordance with current seismic design practice, which in Europe is repres
15、ented by Eurocode 8 (EC8) (), structures may be designed according to either non-dissipative or dissipative behaviour. The former, through which the structure is dimensioned to respond largely in the elastic range, is normally limited to areas of low seismicity or to structures of special use and im
16、portance. Otherwise, codes aim to achieve economical design by employ- ing dissipative behaviour in which considerable inelastic deformations can be accommodated under significant seismic events. In the case of irregular or complex structures, detailed non- linear dynamic analysis may be necessary.
17、However, dissipative design of regular structures is usually performed by assigning a structural behaviour factor (i.e. force reduction or modica- tion factor) which is used to reduce the code-specied forces resulting from idealised elastic response spectra. This is carried out in conjunction with t
18、he capacity design concept which requires an appropriate determination of the capacity of the structure based on a pre-dened plastic mechanism (often referred to as failure mode), coupled with the provision of sufcient ductility in plastic zones and adequate over-strength factors for other regions.
19、Although the fundamental design principles of capacity design may not be purposely dissimilar in various codes, the actual procedures can often vary due to differences in behavioural assumptions and design idealisations. This paper examines the main design approaches and behavioural aspects of typic
20、al cong- urations of moment-resisting and concentrically-braced frames. Although this study focuses mainly on European guidance, the discussions also refer to US provisions (AISC 1999, , a,b) for comparison purposes. Where appropriate, simple analytical treatments are presented in order to illustrat
21、e salient behavioural aspects and trends, and reference is also made to recent experimental observations and ndings. Amongst the various aspects examined in this paper, particular emphasis is given to capacity design verications as well as the implications of drift-related requirements in moment fra
22、mes, and to the post-buck- ling behaviour and ductility demand in braced frames, as these represent issues that warrant cautious interpretation and consideration in the design process. Accordingly, a number of necessary clarications and possible modications to code procedures are put forward. 2 Gene
23、ral considerations 2.1 Limit states and loading criteria The European seismic code, EC8 (Eurocode 8 ) has evolved over a number of years changing status recently from a pre-standard to a full European standard. The code explicitly adopts capacity design approaches, with its associated procedures in
24、terms of failure mode control, force reduction and ductility requirements. One of the main merits of the code is that, in comparison with other seismic provisions, it succeeds to a large extent in maintaining a direct and unambiguous relationship between the specic design procedures and the overall
25、capacity design concept. There are two fundamental design levels considered in EC8, namely no-collapse and damage-limitation, which essentially refer to ultimate and serviceability limit states, respec- tively, under seismic loading. The no-collapse requirement corresponds to seismic action based on
26、 a recommended probability of exceedance of 10% in 50 years, or a return period of 475 years, whilst the values associated with the damage-limitation level relate to arecommended probability of 10% in 10 years, or return period of 95 years. As expected, capacity design procedures are more directly a
27、ssociated with the ultimate limit state, but a number of checks are included to ensure compliance with serviceability conditions. The code denes reference elastic response spectra (Se) for acceleration as a function of the period of vibration (T) and the design ground acceleration (ag) on rm ground.
28、 The elastic spectrum depends on the soil factor (S), the damping correction factor () and pre-dened spectral periods (TB , TC and TD) which in turn depend on the soil type and seismic source characteristics. For ultimate limit state design, inelastic ductile performance is incorporated through the
29、use of the behaviour factor (q) which in the last version of EC8 is assumed to capture also the effect of viscous damping. Essentially, to avoid performing inelastic analysis in design, the elastic spectral accelerations are divided by q (excepting some modications for T TB), to reduce the design fo
30、rces in accordance with the structural conguration and expected ductility. For regular structures (satisfying a number of code-specied criteria), a simplied equivalent static approach can be adopted, based largely on the fundamental mode of vibration. 2.2 Behaviour factors This type of frame has spe
31、cial features that are not dealt with in this study, although some comments relevant to its behaviour are made within the discussions. Also, K-braced frames are not considered herein as they are not recommended for dissipative design. On the other hand, eccentrically-braced frames which can combine
32、the advantages of moment-resisting and concentrically-braced frames in terms of high ductility and stiffness, are beyond the scope of this study. The reference behaviour factor should be considered as an upper bound even if non-linear dynamic analysis suggests higher values. For regular structures i
33、n areas of low seismicity, a q of 1.52.0 may be adopted without applying dissipative design procedures, recognizing the presence of a minimal level of inherent over-strength and ductility. In this case, the struc- ture would be classied as a low ductility class (DCL) for which global elastic analysi
34、s can be utilized, and the resistance of members and connections may be evaluated according to EC3 (Eurocode 3 ) without any additional requirements. 汉字翻译:欧洲对钢框架结构抗震设计评定1介绍即使抗震设计实质性进展受益匪浅,多年来,需要提供实用和相对简单设计方法,不可避免地造成多种多样简化和理想化。这些假设,一些情况下,有广告影响预期抗震性能,所以在合理性和可靠性设计方法下。有必需设计概念和应用不停评定和修改规则是依据最近研究和对地震行为改善了
35、解。为此,本文在评定潜在方法和关键步骤采取钢结构工程抗震设计中,用强调欧洲设计要求,制订本要求。根据现行抗震设计实践,这在欧洲被表示Eurocode 8(EC8)(),结构也能够设计出系统依据或耗散行为。这位前,藉此结构尺寸进行回应关键集中在弹性范围内,通常是有限地域地震活动或结构低特殊用途和关键性。不然,编码目标是要实现节省型设计被耗散行为在相当大弹性变形能得到满足在重大地震事件。在案件不规则或复杂结构,具体非-线性动态分析可能是必需。然而,常规结构设计系统含有耗散经过指定一个常常演出结构行为原因(比如力量还原或修改原因),用它来降低所造成指定代码,正如有弹性响应谱。这是进行结合能力设计概念
36、,需要采取一个适宜容量确实定基于一个预先定义结构塑料机械(通常称为失效模式),伴伴随提供充足在塑性区和足够延性等原因为其它地域。即使基础设计标准能力设计可能不是有意在多种不一样实际程序代码,能够在常随因为不一样行为假设理想化和理想化设计。摘要本文检视关键设计方法和行为方面抗力矩经典配置和中心支撑帧。即使这项研究关键在欧洲指导下,我们讨论也包含到要求(以1999年, a,b作比较)。在合适地方,简单解析诊疗,为了说明了引人注目标行为方面和发展趋势参考。最近试验观察也做了多种努力和结果。关键是给设计验证作为相关要求含义,时刻帧后屈曲行为和延性需求支撑框架,因为这些代表问题,谨慎解释和考虑设计过程。
37、所以,一定数量必需澄清和可能修改代码程序提出了2种通常考虑。2.1极限状态和加载标准欧洲抗震规范,EC8(Eurocode 8 )已经进化数年,最近从一个准标准地位改变了欧洲标准。代码明确采取能力设计方法,及对应程序方面失效方法控制力降低和延性需求。其中最关键优点是相比于其它地震要求,它成功在很大程度上在维持直接和明确关系设计具体程序和整体能力设计概念。有两个基础设计水平,即考虑无坍毁和損害降低,实质上是指最终和极限状态,分别,地震作用下。无坍毁技术对应地震作用要求推荐概率基础上对10%在未来50年里, 或重现期公元前475年价值观,而和之关联損害降低水平相关概率是赞扬10%在内,或重现期95
38、年了。正如大家所预料那样,能力设计程序全部被更直接地联络在一起极限状态,但全部包含了大量检验,以确保符适宜用性条件。这个时期振动(T)和设计地面加速度(ag)在坚固地面上。弹性频谱取决于土壤因子(S),阻尼校正因子()和预案光谱周期(肺结核,血中总胆固醇及TD)依次取决于土壤类型和地震起源特征。最终极限状态设计,为球墨铸铁性能无弹性拌匀经过使用此行为因子(q),在过去版本EC8是假定捕捉作用阻尼。从本质上说,为了避免演出无弹性分析在设计、弹性谱加速度被“问”(除一些修改为T TB)、降低设计力量依据结构配置和预期延性。常规结构(满足一定数量指定代码准则),一个简化等效静态方法可采取关键基于基础模式振动。2.2行为原因在这项研究中,即使有些评论相关它行为是在讨论。同时,k形帧,没有考虑到在内,因为它们是不推荐使用对耗散设计。其次,尤其支撑帧,抗力矩能够结合优点和同心支撑帧在条款高延性和刚度全部超出了本研究范围。参考行为原因应该被视为一个上界即使非线性动态分析提出更高价值。常规结构领域,低地震活动性方法,也可采取无申请1.5 - 2.0设计程序,认识到耗散一个最低水平存在固有超负荷和延性。在这种情况下,组成-真正会被视作是延展性差(DCL),在全球弹性分析即可被利用,和电阻组员和连接端口能够评价依据Eurocode EC3(3),没有任何附加要求。