收藏 分销(赏)

炼油控制工艺流程模板.doc

上传人:w****g 文档编号:2427230 上传时间:2024-05-30 格式:DOC 页数:19 大小:467.04KB
下载 相关 举报
炼油控制工艺流程模板.doc_第1页
第1页 / 共19页
炼油控制工艺流程模板.doc_第2页
第2页 / 共19页
炼油控制工艺流程模板.doc_第3页
第3页 / 共19页
炼油控制工艺流程模板.doc_第4页
第4页 / 共19页
炼油控制工艺流程模板.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、目录第1章 炼油控制工艺步骤图介绍11.1工艺生产过程概要11.2 减压塔关键工艺参数及干扰原因21.3减压塔顶部控制方案31.4 减压塔顶控制工艺步骤图5第2章 标准节流装置设计计算及辅助计算62.1 介绍62.2计算数据7第3章 调整阀口径计算133.1调整阀选型133.2调整阀口径计算133.3 计算实例14参考资料17第1章 炼油控制工艺步骤图介绍1.1工艺生产过程概要减压塔是原油蒸馏装置中一个关键设备,从常压塔塔底出来重油经减压炉加热到395 左右,在减压状态下进行分馏,从而得到不一样馏份产品。减压塔依据生产任务不一样可分为润滑油型和燃料型二种,不管是哪一个类型减压塔,在工艺上侧线产

2、品质量全部是经过侧线温度控制来实现。十多年来产生了很多自校正器,全部成功地用于实际过程,但对变时延、变阶次和变参数过程,控制效果不好。所以研制含有鲁棒性自校正器成为大家关注问题。Richalet等提出了大范围估计概念,在此基础上,Clarke等提出了广义估计自校正器,该算法以CARIMA模型为基础,采取了长时段性能指标,结合辨识和自校正机制,含有较强鲁棒性和模型要求低等特点,并有广泛适用范围。这个算法可克服广义最小方差(需要试凑控制量加权系数)、极点配置(对阶不确定性十分敏感)等自适应算法中存在缺点。GPC法可看成是迄今所知自校正控制方法中最为靠近含有鲁棒性一个。现有常规控制方案通常是采取减压

3、塔一中段回流控制24层气相温度。减二、三、四侧线抽出量控制对应抽出层温度。因为减压塔塔顶和各个侧线之间存在关联,所以常规控制方案在出现干扰时,往往因为调整某一侧线要影响另一侧线,从而极难达成很好控制品质。本文针对减压塔各侧线之间单向关联特点,设计了一个侧线温度多变量解耦估计控制系统,可克服各侧线之间耦合作用,从而改善侧线温度控制性能。减压塔抽真空设备常见是蒸汽喷射器或机械真空泵。蒸汽喷射器结构简单,使用可靠而无需动力机械,水蒸汽起源充足、安全,所以,得到广泛应用。而机械真空泵只在部分干式减压蒸馏塔和小炼油厂减压塔中采取。和通常精馏塔和原油常压精馏塔相比,减压精馏塔有以下多个特点:(1)依据生产

4、任务不一样,减压精馏塔分燃料型和润滑油型两种。润滑油型减压塔以生产润滑油料为主,这些馏分经过深入加工,制取多种润滑油。燃料型减压塔关键生产二次加工原料,如催化裂化或加氢裂化原料。(2)减压精馏塔塔板数少,压降小,真空度高,塔径大。为了尽可能提升拔出深度而又避免分解,要求减压塔在经济合理条件下尽可能提升汽化段真空度。所以,首先要在塔顶配置强有力抽真空设备,同时要减小塔板压力降。减压塔内应采取压降较小塔板,常见有舌型塔板、网孔塔板等。(3)缩短渣油在减压塔内停留时间塔底减压渣油是最重物料,假如在高温下停留时间过长,则其分解、缩合等反应会进行得比较显著,造成不凝气增加,使塔真空度下降,塔底部分结焦,

5、影响塔正常操作。所以,减压塔底部直径常常缩小以缩短渣油在塔内停留时间。1.2 减压塔关键工艺参数及干扰原因1.塔顶温度为了确保减压塔顶温度一定,避免油气损失,在塔顶出管线上装有温度调整器,以调整塔顶回流油量。了提升轻油收率,塔顶轻质油出装置管线装有流量调整器。减一线也设有温度调整器,以控制回流油量。减一线出装置管线上,也装有流量调回流量降低,会使塔顶温度升高,使塔顶产品中重组分含量增加,所以在正常操作时,通常总期望它保持恒定。2.塔侧线温度塔侧线温度决定着侧线产品组成。通常在塔中段循环回流量一定和塔顶温度恒定条件下,它就能维持在一定范围内改变。要深入控制侧线温度,必需调整侧线返回量,也就是改变

6、内回流量。若侧线馏出量增大,则对应内回流量就减小,该侧线温度就要升高,侧线油品就变重。若侧线馏出量减小,则作用相反。3.塔顶压力减压精馏塔压力控制经过一定控制手段使精馏塔塔压保持某一低于大气压压力范围(或称含有一定真空度)。减压精馏塔真空度通常由蒸汽喷射泵或电动真空泵来维持。使用蒸汽喷射泵时,在泵入口管线上吸入一部分空气或惰性气体来控制真空度;使用电动真空泵时,通常把调整阀安装在真空泵旁路上;被调量均为塔内真空度。4.进料温度塔底液位高度决定了塔底油在塔底部停留时间。停留时间长可使塔底油和过热蒸汽有充足混合机会,把其中轻馏分吹上去。所以,塔底油液位要有一定高度。但液位过高,就会使重质馏分也被过

7、热蒸汽夹带上去,所以影响了塔侧线产品,这对靠近塔底侧线产品质量影响最为严重;液位过低,会使停留时间太短,轻质馏分被塔底油带走。塔底液位通常经过对塔底采出量调整加以控制。除上述关键工艺参数对减压塔操作有显著影响外,塔进料流量、和进料组分也是比较关键干扰原因。1.3减压塔顶部控制方案关键控制回路(1)减压塔塔顶温度和塔顶回流流量组成串级调整回路;(2)减压塔上部液位控制;(3)水封罐内液位控制;(4)塔顶回流手动控制。下面分别做一一介绍:(1)塔顶温度回流控制本设计中用是出口温度和回流流量串级控制系统,系统方框图以下:图1-1塔顶温度回流控制系统方框图该串级控制系统主被控变量是塔顶出口气体温度,副

8、被控变量是回流管内液体流量,使用串级控制目标是控制住控变量温度稳定。这如前面所述,温度对产品和产品纯度有很大影响,方便于分流部分能够正常进行。在串级控制系统中干扰可能作用于主回路、副回路也可能同时作用和主副回路。(2)减压塔上部液位控制本设计中用是单回路控制系统,系统方框图以下:图1-2 减压塔上部液位控制系统方框图(3)水封罐液位控制本设计中用是单回路控制系统,系统方框图以下:图1-3 水封罐液位控制系统方框图1.4 减压塔顶控制工艺步骤图第2章 标准节流装置设计计算及辅助计算2.1 介绍因为节流装置含有应用历史悠久、稳定性好、结构简单、安装方便等优点,被广泛应用于发电、石油、化工、纺织、钢

9、铁等工业部门。同时因为使用和安装条件不一样,节流装置分类较细;按取压方法分类:分为角接取压法、法兰取压法、径距取压法(见图2)、特殊取压法等。按测量流体分类:a,用于通常测量分,角接取压标准孔板(包含八槽孔板关键关键用于发电厂,高压透镜垫孔板关键用于化工厂)、法兰取压标准孔板、径距取压标准孔板、角接取压标准喷嘴(包含八槽喷嘴关键关键用于发电厂,高压透镜垫喷嘴关键用于化工厂)、径距取压长颈喷嘴等;b,用于水平管线测量脏污介质,角接取压圆缺孔板及偏心孔板(均为非标准节流装置);c,用于低雷诺数流量,1/4圆喷嘴、双重孔板、锥形入口孔板(均为非标准节流装置);d,用于要求压力损失较低场所,标准文丘利

10、管、标准文丘利喷嘴;e,用于较小管径(管道内径5D49),角接取压小孔板、小喷嘴,法兰取压小孔板(均为非标准节流装置);另外有耐磨孔板、端头节流装置(孔板、喷嘴等)、双重文丘利管、限流孔板、V型锥、弯管、矩形文丘利管、环型孔板,楔形孔板,音速喷嘴等非标准节流装置。另外我厂还生产双室平衡器、单室平衡器、沉降器、隔离器、集气器等节流装置附件。GB/T2624-93全称为流量测量节流装置 用孔板、喷嘴和文丘里管测量充满圆管流体测量。中国压差流量计经历了仿制、统一标准设计和自行设计等阶段:中国1959年由国家推荐苏联27-54规程作为中国暂行规程。1993年2月3日由国家技术监督局同意GB/T2624

11、-93替换GB2624-81,1993年8月1日实施。该标准第一次等效采取ISO5167(1991)和国际接轨,标志着中国现行标准节流装置,在推广采取国际标准上研究结果、提升测量精度方面,以取得了突破性进展。整体安装,对于不宜整体安装,应确保两法兰平行度、同轴度及和管线垂直度。b、新装管路系统,必需在管路冲冼或扫线后再进行节流件安装。c、注意节流件安装方向“”号应于流束流动方向一致。d、节流装置安装在垂直管线上时,取压口位置可在取压装置平面上任意选择。2.2计算数据表2-1 标准节流装置设计计算任务书序号项 目符号单位数值已知条件:1被测介质名称减一线油2被测介质温度t55 3被测介质压力P9

12、.3 MPa4管内径D100mm5节流件形式孔板6取压方法角接7工况密度1810 kg/m38工况粘度12.1329最大流量20.2节流件材料选,其热膨胀系数为0.0000166;管道材料为20#钢,其热膨胀系数为0.00001116。1.辅助计算(1)计算流量标尺因被测介质为液体,应求出质量流量。所以qm= qv 1 =81020.2=16362Kg/h(2)计算差压上限由其中C=0.6,=0.5,=1,得5313.0208Pa因国产差变系列值为1.0,1.6,2.5,4.0,6.0,取=6000.00 Pa。(3)求工况下管道直径 =0.11+0.00001116(55-20)=0.100

13、039管道内径(下实测值)管道材料热膨胀系数被测介质温度(4)求雷诺数 =27132.35333最大质量流量工作状态下粘度(5)求 =0. 2.初值计算(1)求设:=0.6,=1令 =0.又=0.求=0.(2)求 =0. 0.(3)正确度判据 =没有达成精度要求,继续求解。3进行迭代计算,设定第2个假定值=(1)求(2)求 (3)正确度判据 没有达成精度要求,继续求解。4进行迭代计算,设定第三个假定值,利用快速收敛玄截法公式 (1)求 (2)求 0.0000 (3)正确度判据 没有达成精度要求,继续求解。5同上法,继续迭代计算: 得 正确度达成要求。计算结果所以得 得:确定最小直管段长度第3章

14、 调整阀口径计算3.1调整阀选型调整阀选择通常应遵照标准有以下几点。 一.调整阀结构型式:应能满足介质温度、压力、流动性、流向、调整范围和严密性要求。二.调整阀流量特征:应能满足系统特征进行合理赔偿。调整阀流量特征是指介质流过阀相对流量和阀杆相对位移间关系,数学表示式以下:Q/Qmax=f(l/L),式中Q/Qmax为相对流量,为调整阀在某一开度时流量Q和全开流量Qmax之比;l/L为相对位移,调整阀在某一开度时阀芯位移l和全开位移L之比。选择总体标准是调整阀流量特征应和调整对象特征及调整器特征相反,这么可使调整系统综合特征靠近于线性。选择流量特征通常在工艺系统要求下进行,不过还要考虑下述实际

15、情况。1、直线性流量特征适用范围: 差压改变小,几乎恒定; 工艺步骤关键参数改变呈线性; 系统压力损失大部分分配在调整阀上(改变开度,阀上差压改变相对较小); 外部干扰小,给定值改变小,可调范围要求小。 2、等百分比特征适用范围: 实际可调范围大; 开度改变,阀上差压改变相对较大; 管道系统压力损失大; 工艺系统负荷大幅度波动; 调整阀常常在小开度下运行。3、除了以上两种常见流量特征之外,还有抛物线特征和快开特征等其它流量特征调整阀。三.调整阀口径:应能满足工艺上对流量要求。依据已知流体条件,计算出必需Kv值,选择适宜调整阀口径。3.2调整阀口径计算一、确定使用条件1、介质名称,性质及关键物化

16、参数2、工艺参数(流量、阀前、后压力、温度等)3、配管情况(型式、阀前、后直径、系统阻力计算、预估压降比S值等)4、自控对象类型、特点,如主调参数及关键干扰原因等5、调整性能要求,如对泄漏量、稳定性等要求。二、初选阀型1、依据使用条件初选阀型,并决定流向及流量特征2、按初选阀型找到该产品系列参数,如DN、PN、Kv等三、Kv值计算公式Kv是国际单位流量系数。它定义为:温度为5至40水,在压降105Pa下,流过调整阀每小时立方米。在现在常采取多个符号中,Cv=1.167C,KvC,除此以外,还有用Cg表示气体,Cs表示蒸汽流量系数。 Kv值计算公式有很多个,下面介绍是一个计算简单,包含物化参数较

17、少计算公式。3.3 计算实例 表3-1 调整阀口径计算任务书序号项 目符 号单 位数 值123456789已知条件:被测介质名称被测介质温度最大流量阀前压力阀后压力最小流量管道内径工作状态下密度工作状态下运动粘度tQmaxP1P2QminD11m3/hmPamPammmmkg/m3cp减顶油580.936.140.57508202.1321.依据已知条件可选单座阀(JP) ,选直径流量特征. R=502.根据非阻塞流计算其流量系数: 18.3772374液体体积流量被测介质工况密度阀前压力阀后压力3.依据需要对Kv值进行低雷诺数修正 计算调整阀雷诺数Reu Reu 9.9945773液体体积流

18、量 运动粘度液体压力恢复系数属于低雷诺数,需要修正,修正以后流量系数雷诺数系数因为选是单座阀,所以无需进行管件形状修订4.选定口径 Kv值圆整放大查产品目录,取Kv27.5()其放大系数为:m1.3查相关资料,知满足时,确定阀开度:由m得 调整阀可调比,R50即开度,可满足要求。5.结论 选定单座阀(JP),取DN40为选定口径,非阻塞流工况,不作噪声预估。参考资料 1HG/T2063620639-1998,化工装置自控工程设计要求(上下卷)S .2GB/T2624-1993,流量测量节流装置 S .3奚文群,翁维勤.调整阀口径计算指南M.兰州:化工部自控设计技术中心站,1991. 4董德发,张天春.自控工程设计基础M.大庆:大庆石油学院,1999.5王骥程,祝和云.化工过程控制工程M .北京:化学工业出版社,.

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 品牌综合 > 技术交底/工艺/施工标准

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服