收藏 分销(赏)

椭圆的离心率专题训练汇总.doc

上传人:精*** 文档编号:2393673 上传时间:2024-05-29 格式:DOC 页数:32 大小:780.51KB
下载 相关 举报
椭圆的离心率专题训练汇总.doc_第1页
第1页 / 共32页
椭圆的离心率专题训练汇总.doc_第2页
第2页 / 共32页
椭圆的离心率专题训练汇总.doc_第3页
第3页 / 共32页
椭圆的离心率专题训练汇总.doc_第4页
第4页 / 共32页
椭圆的离心率专题训练汇总.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、椭圆的离心率专题训练(带详细解析)一选择题(共29小题)1(2015潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()ABCD2(2015河南模拟)在区间1,5和2,4分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()ABCD3(2015湖北校级模拟)已知椭圆(ab0)上一点A关于原点的对称点为点B,F为其右焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为()ABCD4(2015西安校级三模)斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个

2、焦点,则该椭圆的离心率为()ABCD5(2015广西模拟)设椭圆C:=1(ab0)的左、右焦点分别为F1、F2,P是C上的点,PF2F1F2,PF1F2=30,则C的离心率为()ABCD6(2015绥化一模)已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,F1PF2的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=()ABCD7(2015长沙模拟)已知F1(c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()ABCD8(2015朝阳二模)椭圆+=1(ab0)的左、右焦点分别是F1,F2,过F2作倾斜角为120的直线与椭圆的一个

3、交点为M,若MF1垂直于x轴,则椭圆的离心率为()AB2C2(2)D9(2015新余二模)椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()ABCD或10(2015怀化二模)设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足F1PF2=120,则椭圆的离心率的取值范围是()ABCD11(2015南昌校级二模)设A1,A2分别为椭圆=1(ab0)的左、右顶点,若在椭圆上存在点P,使得,则该椭圆的离心率的取值范围是()A(0,)B(0,)CD12(2015宜宾县模拟)设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,

4、且|MF1|=4,|NF1|=3,则椭圆的离心率为()ABCD13(2015高安市校级模拟)椭圆C:+=1(ab0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()ABCD一l14(2015宁城县三模)已知F1,F2分别为椭圆+=1(ab0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴若|F1F2|=2|PF2|,则该椭圆的离心率为()ABCD15(2015郑州二模)已知椭圆(ab0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()ABCD16(2015绍兴一模)已知

5、椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1AMF2,且|MF2|=2|OA|,则椭圆C的离心率为()ABCD17(2015兰州模拟)已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足|=2|=2|,则椭圆的离心率e=()ABCD18(2015甘肃校级模拟)设F1,F2分别是椭圆+=1(ab0)的左右焦点,若在直线x=上存在点P,使PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A(0,)B(0,)C(,1)D(,1)19(2015青羊区校级模拟)点F为椭圆+=1(ab0)的一个焦点,若椭圆上在点A使AOF为正三角

6、形,那么椭圆的离心率为()ABCD120(2015包头一模)已知椭圆C:=1(ab0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得MEF为正三角形,则椭圆C的离心率的取值范围是()A,1)B,1)C,1)D(1,21(2015甘肃一模)在平面直角坐标系xOy中,以椭圆+=1(ab0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若ABC是锐角三角形,则该椭圆的离心率的取值范围是()A(,)B(,1)C(,1)D(0,)22(2015杭州一模)设F1、F2为椭圆C:+=1(ab0)的左、右焦点,直线l过焦点F2且与椭圆交于A,

7、B两点,若ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A2B3C116D9623(2015宜宾模拟)直线y=kx与椭圆C:+=1(ab0)交于A、B两点,F为椭圆C的左焦点,且=0,若ABF(0,则椭圆C的离心率的取值范围是()A(0,B(0,C,D,1)24(2015南宁三模)已知F1(c,0),F2(c,0)为椭圆=1(ab0)的两个焦点,若椭圆上存在点P满足=2c2,则此椭圆离心率的取值范围是()A,B(0,C,1)D,25(2015张掖模拟)已知F1(c,0),F2(c,0)是椭圆=1(ab0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围

8、为()ABCD26(2015永州一模)已知两定点A(1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()ABCD27(2015山东校级模拟)过椭圆+=1(ab0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0k,则椭圆的离心率的取值范围是()A(0,)B(,1)C(0,)D(,1)28(2015鹰潭一模)已知椭圆C1:=1(ab0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得BPA=,则椭圆C1的离心率的取值范围是()ABCD2

9、9(2015江西校级二模)已知圆O1:(x2)2+y2=16和圆O2:x2+y2=r2(0r2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1e2),则e1+2e2的最小值是()ABCD参考答案与试题解析一选择题(共29小题)1(2015潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;压轴题;圆锥曲线的定义、性质与方程分析:分等腰三角形F1F2P以F1F2为底和以F1F2为一腰两种情况进行讨论,结合以

10、椭圆焦点为圆心半径为2c的圆与椭圆位置关系的判断,建立关于a、c的不等式,解之即可得到椭圆C的离心率的取值范围解答:解:当点P与短轴的顶点重合时,F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰F1F2P;当F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,F1F2=F1P,点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰F1F2P,在F1F2P1中,F1F2+PF1PF2,即2c+2c2a2c,由此得知3ca所以离心率e当e=时,F1F2P是等边三角形,与中的三角形重复

11、,故e同理,当F1P为等腰三角形的底边时,在e且e时也存在2个满足条件的等腰F1F2P这样,总共有6个不同的点P使得F1F2P为等腰三角形综上所述,离心率的取值范围是:e(,)(,1)点评:本题给出椭圆的焦点三角形中,共有6个不同点P使得F1F2P为等腰三角形,求椭圆离心率e的取值范围着重考查了椭圆的标准方程和简单几何性质等知识,属于基础题2(2015河南模拟)在区间1,5和2,4分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程分析:表示焦点在x轴上且离心率小于的椭圆时,(a,b)点

12、对应的平面图形的面积大小和区间1,5和2,4分别各取一个数(a,b)点对应的平面图形的面积大小,并将他们一齐代入几何概型计算公式进行求解解答:解:表示焦点在x轴上且离心率小于,ab0,a2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x轴上且离心率小于的椭圆的概率为P=,故选B点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关3(2015湖北校级模拟)已知椭圆(ab0)上一点A关于原点的对称点为点B,F为其右焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为()ABCD考点:椭圆的简单性质菁优

13、网版权所有专题:三角函数的图像与性质;圆锥曲线的定义、性质与方程分析:首先利用已知条件设出椭圆的左焦点,进一步根据垂直的条件得到长方形,所以:AB=NF,再根据椭圆的定义:|AF|+|AN|=2a,由离心率公式e=由的范围,进一步求出结论解答:解:已知椭圆(ab0)上一点A关于原点的对称点为点B,F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形根据椭圆的定义:|AF|+|AN|=2aABF=,则:ANF=所以:2a=2ccos+2csin利用e=所以:则:即:椭圆离心率e的取值范围为故选:A点评:本题考查的知识点:椭圆的定义,三角函数关系式的恒等变换,利用

14、定义域求三角函数的值域,离心率公式的应用,属于中档题型4(2015西安校级三模)斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()ABCD考点:椭圆的简单性质;直线与圆锥曲线的综合问题菁优网版权所有专题:计算题分析:先根据题意表示出两个焦点的交点坐标,代入椭圆方程,两边乘2a2b2,求得关于的方程求得e解答:解:两个交点横坐标是c,c所以两个交点分别为(c,c)(c,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2b2=a2c2c2(3a22c2)=2a42a2c22a45a2c2+2c4=0(2a2c2)(a22c2)

15、=0=2,或0e1所以e=故选A点评:本题主要考查了椭圆的简单性质考查了椭圆方程中a,b和c的关系5(2015广西模拟)设椭圆C:=1(ab0)的左、右焦点分别为F1、F2,P是C上的点,PF2F1F2,PF1F2=30,则C的离心率为()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程分析:设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案解答:解:设|PF2|=x,PF2F1F2,PF1F2=30,|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c2a=3x

16、,2c=x,C的离心率为:e=故选A点评:本题考查椭圆的简单性质,利用三角形边角关系求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力6(2015绥化一模)已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,F1PF2的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=()ABCD考点:椭圆的简单性质菁优网版权所有专题:压轴题分析:在焦点F1PF2中,设P(x0,y0),由三角形重心坐标公式,可得重心G的纵坐标,因为,故内心I的纵坐标与G相同,最后利用三角形F1PF2的面积等于被内心分割的三个小三角形的面积之和建立a、b、c的等式,即可解得离心率解答:解

17、:设P(x0,y0),G为F1PF2的重心,G点坐标为 G(,),IGx轴,I的纵坐标为,在焦点F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c=|F1F2|y0|又I为F1PF2的内心,I的纵坐标即为内切圆半径,内心I把F1PF2分为三个底分别为F1PF2的三边,高为内切圆半径的小三角形=(|PF1|+|F1F2|+|PF2|)|F1F2|y0|=(|PF1|+|F1F2|+|PF2|)|即2c|y0|=(2a+2c)|,2c=a,椭圆C的离心率e=故选A点评:本题考查了椭圆的标准方程和几何意义,重心坐标公式,三角形内心的意义及其应用,椭圆离心率的求法7(2015长沙模拟)已知

18、F1(c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()ABCD考点:椭圆的简单性质;向量在几何中的应用菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设P(m,n ),由得到n2=2c2m2 把P(m,n )代入椭圆得到 b2m2+a2n2=a2b2 ,把代入得到 m2 的解析式,由m20及m2a2求得的范围解答:解:设P(m,n ),=(cm,n)(cm,n)=m2c2+n2,m2+n2=2c2,n2=2c2m2 把P(m,n )代入椭圆得b2m2+a2n2=a2b2 ,把代入得m2=0,a2b22a2c2, b22c2,a2c22c2, 又 m

19、2a2,a2,0,故a22c20,综上,故选:C点评:本题考查两个向量的数量积公式,以及椭圆的简单性质的应用,属于基础题8(2015朝阳二模)椭圆+=1(ab0)的左、右焦点分别是F1,F2,过F2作倾斜角为120的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()AB2C2(2)D考点:椭圆的简单性质菁优网版权所有专题:计算题分析:如图,RtMF2 F1中,tan60=,建立关于a、c的方程,解方程求出 的值解答:解:如图,在RtMF1F2中,MF2F1=60,F1F2=2cMF2=4c,MF1=2cMF1+MF2=4c+2c=2ae=2,故选B点评:本题考查直角三角形中的边

20、角关系,椭圆的简单性质,一元二次方程的解法9(2015新余二模)椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()ABCD或考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:利用椭圆的定义、三角形的三边的关系、椭圆C的离心率e的计算公式即可得出解答:解:椭圆C上的点P满足,|PF1|=3c,由椭圆的定义可得|PF1|+|PF2|=2a,|PF2|=2a3c利用三角形的三边的关系可得:2c+(2a3c)3c,3c+2c2a3c,化为椭圆C的离心率e的取值范围是故选:C点评:本题考查了椭圆的定义、三角形的三边的关系、椭圆的离心率的计算公式等

21、基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题10(2015怀化二模)设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足F1PF2=120,则椭圆的离心率的取值范围是()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题分析:先根据椭圆定义可知|PF1|+|PF2|=2a,再利用余弦定理化简整理得cosPF1F2=1,进而根据均值不等式确定|PF1|PF2|的范围,进而确定cosPF1F2的最小值,求得a和b的关系,进而求得a和c的关系,确定椭圆离心率的取值范围解答:解:F1(c,0),F2(c,0),c0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=aex1在

22、PF1F2中,由余弦定理得cos120=,解得x12=x12(0,a2,0a2,即4c23a20且e21e=故椭圆离心率的取范围是 e故选A点评:本题主要考查了椭圆的应用当P点在短轴的端点时F1PF2值最大,这个结论可以记住它在做选择题和填空题的时候直接拿来解决这一类的问题11(2015南昌校级二模)设A1,A2分别为椭圆=1(ab0)的左、右顶点,若在椭圆上存在点P,使得,则该椭圆的离心率的取值范围是()A(0,)B(0,)CD考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:根据题意设P(asin,bcos),所以根据条件可得到,b2换上a2c2从而可得到,再根据a,

23、c0,即可解出离心率的取值范围解答:解:设P(asin,bcos),A1(a,0),A2(a,0);,;,a,c0;解得;该椭圆的离心率的范围是()故选:C点评:考查椭圆的标准方程,椭圆的顶点的定义,顶点的坐标,由点的坐标求直线的斜率,以及b2=a2c2,椭圆斜率的概念及计算公式,设出P点坐标是求解本题的关键12(2015宜宾县模拟)设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆的离心率为()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程分析:设椭(ab0),运用椭圆的

24、定义,可得|NF2|=2a|NF1|=2a3,|MF2|+|MF1|=2a,即有2c+4=2a,取MF1的中点K,连接KF2,则KF2MN,由勾股定理可得a+c=12,解得a,c,运用离心率公式计算即可得到解答:解:设椭圆(ab0),F1(c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a|NF1|=2a3,|MF2|+|MF1|=2a,即有2c+4=2a,即ac=2,取MF1的中点K,连接KF2,则KF2MN,由勾股定理可得|MF2|2|MK|2=|NF2|2|NK|2,即为4c24=(2a3)225,化简即为a+c=12,由解得a=7,c=5,则离心

25、率e=故选:D点评:本题考查椭圆的定义、方程和性质,主要考查椭圆的定义的运用和离心率的求法,考查运算能力,属于中档题13(2015高安市校级模拟)椭圆C:+=1(ab0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()ABCD一l考点:椭圆的简单性质菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程分析:求出F(c,0)关于直线x+y=0的对称点A的坐标,代入椭圆方程可得离心率解答:解:设F(c,0)关于直线x+y=0的对称点A(m,n),则,m=,n=c,代入椭圆方程可得,化简可得e48e2+4=0,e=1,故选:D点评:本题考查椭圆的方程简单性质的应

26、用,考查对称知识以及计算能力14(2015宁城县三模)已知F1,F2分别为椭圆+=1(ab0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴若|F1F2|=2|PF2|,则该椭圆的离心率为()ABCD考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设F1(c,0),F2(c,0),(c0),通过|F1F2|=2|PF2|,求出椭圆的离心率e解答:解:F1,F2分别为椭圆+=1(ab0)的左、右焦点,设F1(c,0),F2(c,0),(c0),P为椭圆上一点,且PF2垂直于x轴若|F1F2|=2|PF2|,可得2c=2,即ac=b2=a2c2可得e2+e1=0解得e=故

27、选:D点评:本题考查椭圆的离心率的求法,是中档题,解题时要认真审题,注意通径的求法15(2015郑州二模)已知椭圆(ab0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;作图题;圆锥曲线中的最值与范围问题分析:由题意作图,从而设设点Q(x0,y0),从而由2|PF1|=3|QF1|可写出点P(cx0,y0);再由椭圆的第二定义可得|PF1|=|MP|,|QF1|=|QA|,从而可得3(x0+)=2(cx0+),从而化简得到x0=,再由|PF2|=|F

28、1F2|及椭圆的第二定义可得3a2+5c28ac=0,从而解得解答:解:由题意作图如右图,l1,l2是椭圆的准线,设点Q(x0,y0),2|PF1|=3|QF1|,点P(cx0,y0);又|PF1|=|MP|,|QF1|=|QA|,2|MP|=3|QA|,又|MP|=cx0+,|QA|=x0+,3(x0+)=2(cx0+),解得,x0=,|PF2|=|F1F2|,(c+x0+)=2c;将x0=代入化简可得,3a2+5c28ac=0,即58+3=0;解得,=1(舍去)或=;故选:A点评:本题考查了椭圆的性质应用及数形结合的思想应用,属于中档题16(2015绍兴一模)已知椭圆C:的左、右焦点分别为

29、F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1AMF2,且|MF2|=2|OA|,则椭圆C的离心率为()ABCD考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:如图所示,在RtAF1F2中,|F1F2|=2|OA|=2c又|MF2|=2|OA|,可得AF2F1=60,在RtAF1F2中,可得|AF2|=c,|AF1|=c再利用椭圆的定义即可得出解答:解:如图所示,在RtAF1F2中,|F1F2|=2|OA|=2c又|MF2|=2|OA|,在RtOMF2中,AF2F1=60,在RtAF1F2中,|AF2|=c,|AF1|=c2a=c+c,=1

30、故选:C点评:本题考查了直角三角形的边角关系及其性质、椭圆的定义,考查了推理能力与计算能力,属于中档题17(2015兰州模拟)已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足|=2|=2|,则椭圆的离心率e=()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;解三角形;平面向量及应用分析:由已知可得2a=|MF1|+|MF2|=3|MF2|,进而在F1OM中,|F1O|=c,|F1M|=a,|OM|=a,在OF2M中,|F2O|=c,|M0|=|F2M|=a,由MOF1=180MOF2得:cosMOF1+cosMOF2=0,结合余弦定理,化简整理,再由离心率公式计算可

31、得答案解答:解:|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cosMOF1=,在OF2M中,|F2O|=c,|M0|=|F2M|=a,则cosMOF2=,由MOF1=180MOF2得:cosMOF1+cosMOF2=0,即为+=0,整理得:3c22a2=0,即=,即e2=,即有e=故选:D点评:本题考查的知识点是椭圆的简单性质,主要考查离心率的求法,构造关于a,c的方程是解答的关键,难度中档18(2015甘肃校级模拟)设F1,F2分别是椭圆+=1(ab

32、0)的左右焦点,若在直线x=上存在点P,使PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A(0,)B(0,)C(,1)D(,1)考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:由已知P(,y),可得F1P的中点Q的坐标,求出斜率,利用,可得y2=2b2,由此可得结论解答:解:由已知P(,y),得F1P的中点Q的坐标为(),y2=2b2,y2=(a2c2)(3)0,30,0e1,e1故选:C点评:本题考查椭圆的离心率的计算,考查学生分析解决问题的能力,确定F1P的中点Q的坐标是解答该题的关键,是中档题19(2015青羊区校级模拟)点F为椭圆+=1(ab0)的一个焦

33、点,若椭圆上存在点A使AOF为正三角形,那么椭圆的离心率为()ABCD1考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:首先,写出焦点F的坐标,然后,根据AOF为正三角形,建立等式,求解其离心率解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60=,点P坐标为:(c,c),代人椭圆的标准方程,得,b2c2+3a2c2=4a2b2,e=故选:D点评:本题重点考查了椭圆的概念和基本性质,属于中档题求解离心率的解题关键是想法设法建立关于a,b,c的等量关系,然后,进行求解20(2015包头一模)已知椭圆C:=1(ab0)和圆O:x2+y

34、2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得MEF为正三角形,则椭圆C的离心率的取值范围是()A,1)B,1)C,1)D(1,考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:如图所示,连接OE,OF,OM,由于MEF为正三角形,可得OME=30,OM=2ba,再利用离心率计算公式即可得出解答:解:如图所示,连接OE,OF,OM,MEF为正三角形,OME=30,OM=2b,则2ba,椭圆C的离心率e=又e1椭圆C的离心率的取值范围是故选:C点评:本题考查了椭圆与圆的标准方程及其性质、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题21

35、(2015甘肃一模)在平面直角坐标系xOy中,以椭圆+=1(ab0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若ABC是锐角三角形,则该椭圆的离心率的取值范围是()A(,)B(,1)C(,1)D(0,)考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:A根据ABC是锐角三角形,可得BAD45,且1,化为,解出即可解答:解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,AABC是锐角三角形,BAD45,1,化为,解得故选:A点评:本题考查了椭圆与圆的标准方程

36、及其性质、直线与椭圆相交问题、锐角三角形,考查了推理能力与计算能力,属于中档题22(2015杭州一模)设F1、F2为椭圆C:+=1(ab0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A2B3C116D96考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:可设|F1F2|=2c,|AF1|=m,若ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,再由椭圆的定义和周长的求法,可得m,再由勾股定理,可得a,c的方程,运用离心率公式计算即可得到解答:解:可

37、设|F1F2|=2c,|AF1|=m,若ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得ABF1的周长为4a,即有4a=2m+m,即m=2(2)a,则|AF2|=2am=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2)2a2+4()2a2,即有c2=(96)a2,即有e2=96故选D点评:本题考查椭圆的定义、方程和性质,主要考查离心率的求法,同时考查勾股定理的运用,灵活运用椭圆的定义是解题的关键23(2015宜宾模拟)直线y=kx与椭圆C:+=1(ab0)交于A、B两点,F为椭圆C的左焦点

38、,且=0,若ABF(0,则椭圆C的离心率的取值范围是()A(0,B(0,C,D,1)考点:椭圆的简单性质;平面向量数量积的运算菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设F2是椭圆的右焦点由=0,可得BFAF,再由O点为AB的中点,OF=OF2可得四边形AFBF2是矩形设ABF=,可得BF=2ccos,BF2=AF=2csin,利用椭圆的定义可得BF+BF2=2a,可得e=,即可得出解答:解:设F2是椭圆的右焦点=0,BFAF,O点为AB的中点,OF=OF2四边形AFBF2是平行四边形,四边形AFBF2是矩形如图所示,设ABF=,BF=2ccos,BF2=AF=2csin,BF+BF

39、2=2a,2ccos+2csin=2a,e=,sin+cos=,(0,e故选:D点评:本题考查了椭圆的定义及其标准方程性质、矩形的定义、三角函数的单调性、两角和差的正弦,考查了推理能力与计算能力,属于中档题24(2015南宁三模)已知F1(c,0),F2(c,0)为椭圆=1(ab0)的两个焦点,若椭圆上存在点P满足=2c2,则此椭圆离心率的取值范围是()A,B(0,C,1)D,考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设P(x0,y0),则2c2=,化为又,可得=,利用,利用离心率计算公式即可得出解答:解:设P(x0,y0),则2c2=(cx0,y0)(cx0,y

40、0)=+,化为又,=,b2=a2c2,故选:A点评:本题考查了椭圆的标准方程及其性质、向量数量积运算性质、不等式的性质,考查了推理能力与计算能力,属于中档题25(2015张掖模拟)已知F1(c,0),F2(c,0)是椭圆=1(ab0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()ABCD考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设P(x0,y0),则,可得:=由于,可得=c2,化为=,利用,及其离心率计算公式即可得出解答:解:设P(x0,y0),则,=,(cx0,y0)(cx0,y0)=c2,化为=c2,=2c2,化为=,0a2,解得故选:D点评:本题考查了椭圆的标准方程及其性质、数量积运算性质、不等式的解法,考查了变形能力、推理能力与计算能力,属于中档题26(2015永州一模)已知两定点A(1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()ABCD考点:椭圆的简单性质菁优网版权所有专题:计算题;直线与圆;圆锥曲线的定义、性质与方程分析:作出直线y=x+2,过A

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服