资源描述
2022-2023学年高一上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.设,,,则()
A. B.
C. D.
2.下列命题正确的是
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行
3.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象( )
A.向右平移个单位长度 B.向左平移个单位长度
C.向右平移个单位长度 D.向左平移个单位长度
4.已知函数,则( )
A.-1 B.2
C.1 D.5
5.若命题:,则命题的否定为()
A. B.
C. D.
6.已知锐角终边上一点A的坐标为,则的弧度数为()
A.3 B.
C. D.
7.已知函数,若对一切,都成立,则实数a的取值范围为( )
A. B.
C. D.
8.设,且,则的最小值是()
A. B.8
C. D.16
9.设,表示两个不同平面,表示一条直线,下列命题正确的是( )
A.若,,则.
B.若,,则.
C.若,,则.
D.若,,则.
10.已知定义域为的函数满足,且,若,则( )
A. B.
C. D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.函数的定义域是__________,值域是__________.
12.若集合,则满足的集合的个数是___________.
13.设,用表示不超过的最大整数.则称为高斯函数.例如:,,已知函数,则的值域为___________.
14.已知,则的最小值为_______________.
15.命题“,”的否定为____.
16.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.已知的两顶点和垂心.
(1)求直线AB的方程;
(2)求顶点C的坐标;
(3)求BC边的中垂线所在直线的方程.
18.义域为的函数满足:对任意实数x,y均有,且,又当时,.
(1)求的值,并证明:当时,;
(2)若不等式对任意恒成立,求实数的取值范围.
19.已知函数是定义在R上的奇函数,当时,
(Ⅰ)求函数在R上的解析式;
(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由
20.设,且.
(1)求的值;
(2)求在区间上的最大值.
21.已知函数(且).
(1)判断的奇偶性,并予以证明;
(2)求使得成立的的取值范围.
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、C
【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小.
【详解】因为,即,
,即,
,即,
所以,
故选:C.
2、C
【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.
[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.
3、D
【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.
【详解】根据图象:,,故,,故,
,即,,,
当时,满足条件,则,
故只需将的图象向左平移个单位即可.
故选:D.
4、A
【解析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.
【详解】∵在这个范围之内,
∴
故选:A.
【点睛】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.
5、D
【解析】根据存在量词的否定是全称量词可得结果.
【详解】根据存在量词的否定是全称量词可得命题的否定为.
故选:D
6、C
【解析】先根据定义得正切值,再根据诱导公式求解
【详解】由题意得,选C.
【点睛】本题考查三角函数定义以及诱导公式,考查基本分析化简能力,属基础题.
7、C
【解析】将,成立,转化为,对一切成立,由求解即可.
【详解】解:因为函数,若对一切,都成立,
所以,对一切成立,
令,
所以,
故选:C
【点睛】方法点睛:恒(能)成立问题的解法:
若在区间D上有最值,则
(1)恒成立:;;
(2)能成立:;.
若能分离常数,即将问题转化为:(或),则
(1)恒成立:;;
(2)能成立:;.
8、B
【解析】转化原式为,结合均值不等式即得解
【详解】由题意,故
则
当且仅当,即时等号成立
故选:B
9、C
【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.
【详解】若,,则或,不正确;
若,,则,或相交,不正确;
若,,可得没有公共点,即,正确;
若,,则或相交,不正确,故选C.
【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.
10、A
【解析】根据,,得到求解.
【详解】因为,,
所以,
所以,
所以,
所以,
,
故选:A
二、填空题:本大题共6小题,每小题5分,共30分。
11、 ①. ②.
【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.
详解】对于函数,有,即,解得,
且.
因此,函数的定义域为,值域为.
故答案为:;.
12、4
【解析】求出集合,由即可求出集合的个数
【详解】因为集合,,
因为,故有元素0,3,且可能有元素1或2,
所以或或或
故满足的集合的个数为,
故答案为:
13、
【解析】对进行分类讨论,结合高斯函数的知识求得的值域.
【详解】当为整数时,,
当不是整数,且时,,
当不是整数,且时,,
所以的值域为.
故答案为:
14、##225
【解析】利用基本不等式中“1”的妙用即可求解.
【详解】解:因为,
所以,当且仅当,即时等号成立,
所以的最小值为.
故答案为:.
15、,
【解析】利用全称量词命题的否定可得出结论.
【详解】命题“,”为全称量词命题,该命题的否定为“,”.
故答案为:,.
16、
【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.
【详解】由题设,“弦”为,“矢”为,
所以所得弧田面积是.
故答案为:.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、 (1) ; (2) ;(3) .
【解析】(1)由两点间的斜率公式求出,再代入其中一点,由点斜式求出直线的方程(也可直接代两点式求解);
(2)由题可知,,借助斜率公式,进而可分别求出直线与直线的方程,再联立方程,即可求得点的坐标;
(3)由中垂线性质知,边的中垂线的斜率等于,再由(2) 可求得边的中点坐标,进而可求解.
【详解】(1)由题意,直线的方程为:
即:.
(2)由题作示意图如下:
,
直线的方程为:,即: —— ①
又,直线与轴垂直,直线的方程为: —— ②
联立①②,解得,
故顶点的坐标为
(3)由题意及 (2) 可知,边的中垂线的斜率等于,
边的中点为,
故边的中垂线的方程为:
【点睛】本题考查直线方程与交点坐标的求法,以及垂心的性质,考查能力辨析能力及运算求解能力,属于中档题.
18、 (1)答案见解析;(2)或.
【解析】(1)利用赋值法计算可得,设,则,
利用拆项:即可证得:当时,;
(2)结合(1)的结论可证得是增函数,据此脱去f符号,原问题转化为在上恒成立,分离参数有:恒成立,结合基本不等式的结论可得实数的取值范围是或.
试题解析:
(1)令,得,
令, 得,
令,得,
设,则,
因为,
所以;
(2)设,
,
因为所以,
所以为增函数,
所以,
即,
上式等价于对任意恒成立,
因为,所以
上式等价于对任意恒成立,
设,(时取等),
所以,
解得或.
19、(Ⅰ);(Ⅱ)存在实数使得的最小值为
【解析】Ⅰ根据奇函数的对称性进行转化求解即可
Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可
【详解】Ⅰ若,则,
∵当时,且是奇函数,
∴当时,,
即当时,,
则
Ⅱ若,
,
设,∵,∴,
则等价为,
对称轴为,
若,即时,在上为增函数,此时当时,最小,
即,即成立,
若,即时,在上为减函数,此时当时,最小,
即,此时不成立,
若,即时,在上不单调,此时当时,最小,
即,
此时在时是减函数,当时取得最小值为,即此时不满足条件
综上只有当才满足条件
即存在存在实数使得最小值为
【点睛】本题主要考查函数奇偶性的应用,以及利用换元法转化为一元二次函数,结合一元二次函数单调性的性质是解决本题的关键,综合性较强,运算量较大,有一定的难度
20、(1);(2)2
【解析】(1)直接由求得的值;
(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域
【详解】解:(1)∵,
∴,
∴;
(2)由得,
∴函数的定义域为,
,
∴当时,是增函数;当时,是减函数,
∴函数在上的最大值是
【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域
21、(1)见解析;(2)见解析
【解析】【试题分析】(I)先求得函数的定义域,然后利用奇偶性的定义判断出函数为奇函数.(2)化简原不等式,并按两种情况来解不等式,由此求得的取值范围.
【试题解析】(Ⅰ)由得定义域为
是奇函数
(Ⅱ)由得
①当时,,解得
②当时,,解得
当时的取值范围是;当时的取值范围是
【点睛】本题主要考查函数的性质,考查函数的定义域和奇偶性,考查不等式的求解方法,考查分类讨论的数学思想.要判断一个函数的奇偶性,首先要求函数的定义域,如果函数的定义域不关于原点对称,则该函数为非奇非偶函数.含有参数不等式的求解,往往需要对参数进行分类讨论.
展开阅读全文