1、2022-2023学年高一上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1函数,xR在( )A.上是增函数B.上是减函数C.上
2、是减函数D.上是减函数2已知函数,则A.B.0C.1D.3直线(为实常数)的倾斜角的大小是AB.C.D.4已知,则a,b,c三个数的大小关系是()A.B.C.D.5已知函数,则使成立的x的取值范围是()A.B.C.D.6函数的定义域是()A.B.C.D.7集合,则()A.B.C.D.8如图,正方形中,为的中点,若,则的值为()A.B.C.D.9将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A.B.C.D.10农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:):甲:9,10,11,1
3、2,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数11已知集合,则( )A.B.C.D.12在平行四边形中,设,下列式子中不正确是()A.B.C.D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13当曲线与直线有两个相异交点时,实数的取值范围是_14若在幂函数的图象上,则_15从200
4、8年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色.下图是2009年至2016年高铁运营总里程数的折线图图(图中的数据均是每年12月31日的统计结果).根据上述信息下列结论中,所有正确结论的序号是_2015年这一年,高铁运营里程数超过0.5万公里;2013年到2016年高铁运营里程平均增长率大于2010到2013高铁运营里程平均增长率;从2010年至2016年,新增高铁运营里程数最多的一年是2014年;从2010年至2016年,新增高铁运营里程数逐年递增;16函数,则_三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过
5、程或演算步骤。)17一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中(1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时?(2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值18甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的
6、次数为2的概率19因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等共为()万元,每年的销售收入万元.设使用该设备前年的总盈利额为万元.(1)写出关于的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.20一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1
7、万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)(1)求(万元)与(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?21已知函数.(1)求的对称中心的坐标;(2)若,求的值.22已知全集,集合(1)求;(2)若,且,求实数的取值范围.参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在
8、上递减.B正确,ACD选项错误.故选:B2、C【解析】根据自变量所在的范围先求出,然后再求出【详解】由题意得,故选C【点睛】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题3、D【解析】计算出直线的斜率,再结合倾斜角的取值范围可求得该直线的倾斜角.【详解】设直线倾斜角为,直线的斜率为,所以,则.故选:D.【点睛】本题考查直线倾斜角的计算,一般要求出直线的斜率,考查计算能力,属于基础题.4、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,所以,综上所述:.故选:A5、C【解
9、析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.6、A【解析】利用对数函数的真数大于零,即可求解.【详解】由函数,则,解得,所以函数的定义域为.故选:A【点睛】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.7、B【解析】解不等式可求得集合,由交集定义可得结果.【详解】,.故选:B.8、D【解析】因为E是DC的中点,所以,考点:平面向量的几何运算9、D【解析】答案:D 左视图即是从正左方
10、看,找特殊位置的可视点,连起来就可以得到答案10、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为,乙组数据的平均数为,故A错误;甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为,乙种麦苗样本株高的中位数为,故D错误.故选:B11、D【解析】利用对数函数与指数函数的性质化简集合,再根据集合交集的定义求解即可【详解】因为,所以,则,故选:D12、B【解析】根据向量加减法计算,再进行判断选择.【
11、详解】;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、【解析】由解析式可知曲线为半圆,直线恒过;画出半圆的图象,找到直线与半圆有两个交点的临界状态,利用圆的切线的求解方法和两点连线斜率公式求得斜率的取值范围.【详解】为恒过的直线则曲线图象如下图所示:由图象可知,当直线斜率时,曲线与直线有两个相异交点与半圆相切,可得:解得:又本题正确结果:【点睛】本题考查利用曲线与直线的交点个数求解参数范围的问题,关键是能够通过数形结合的方式找到临界状态,易错点是忽略曲线的范围,误认为曲线为圆.14、27【解析
12、】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,因为函数图象过点,则,幂函数,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题15、【解析】根据数据折线图,分别进行判断即可.【详解】看2014,2015年对应的纵坐标之差小于,故错误;连线观察2013年到2016年两点连线斜率更大,故正确;2013年到2014年两点纵坐标之差最大,故正确;看相邻纵坐标之差是否逐年增加,显然不是,有增有减,故错误;故答案为:.16、【解析】利用函数的解析式可计算得出的值.【详解】由已知条件可得.故答案为:.三、解答题(本大题共6个小
13、题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)分两段解不等式,解得结果即可得解;(2)求出当时,再根据函数的单调性求出最小值为,解不等式可得解.【详解】(1)由题意,当可得,当时,解得,此时;当时,解得,此时,综上可得,所以病人一次服用9克的药剂,则有效治疗时间可达小时;(2)当时,由,在均为减函数,可得在递减,即有,由,可得,可得m的最小值为【点睛】本题考查了分段函数的应用,正确求出分段函数解析式是解题关键,属于中档题.18、(1) (2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3
14、种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、,、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.19、(1),3年;(2)第二种方案更合适,理由见解析.【解析】(1)利用年的销售收入减去成本,
15、求得的表达式,由,解一元二次不等式求得从第年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得时年平均利润额达到最大值,进而求得总利润.比较两个方案获利情况,作出合理的处理方案.【详解】(1)由题意得: 由得即,解得 由,设备企业从第3年开始盈利(2) 方案一总盈利额,当时, 故方案一共总利润,此时方案二:每年平均利润 ,当且仅当时等号成立故方案二总利润,此时 比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适.【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题.
16、20、(1)();(2)当年产量为件时,所得年利润最大,最大年利润为万元.【解析】(1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数解析式,求出最大值点和最大值即可【详解】(1)由题意得:当时,当时,故();(2)当时,当时,而当时,故当年产量为件时,所得年利润最大,最大年利润为万元.【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.21、(1),;(2).【解析】(1)利用辅助角公式及降幂公式将函数化为,再根据正弦函数的对称中心即可得出答案;(2)由,求得,再利用两角差的余弦公式即可得出答案.【详解】解:(1)由,得,即的对称中心的坐标为,.(2)由(1)知,令,则,所以,则.22、 (1);(2).【解析】分析:(1)先解指数不等式得集合B,再根据补集以及交集定义求结果,(2)根据得,再根据数轴确定实数的取值范围.详解:(1)由,得: . 由则: ,所以: ,(2)由: ,又,当时:,当时:,综上可得:,即.点睛:将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解