1、.复习回顾:复习回顾:1、一元二次方程的形式、一元二次方程的形式2、二次项、二次项系数、二次项、二次项系数3、一次项、一次项系数、一次项、一次项系数4、常数项、常数项5、一元二次方程的解法、一元二次方程的解法.v 形如形如axax+bx+c=0+bx+c=0(其中其中a,b,ca,b,c是是常数,常数,a0a0)叫做一元二次方程叫做一元二次方程为什么为什么a 00呢呢?称:称:a为二次项系数,为二次项系数,ax2叫做二次项叫做二次项 b为一次项系数,为一次项系数,bx叫做一次项叫做一次项 c为常数项为常数项,.w例例1 下列方程哪些是一元二次方程下列方程哪些是一元二次方程?(2)2x25xy6
2、y0(5)x22x31x2(1)7x26x0w解解:(1)、(4)(3)2x2 1 0 13x(4)0y22.例例2 把下列方程化为一元二次方程的形式,并写出它的把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:二次项系数、一次项系数和常数项:3x25x10 x2 x80或或7x2 0 x4035 111 870 435 111870 4或或7x2 4070 47x2 40 例题分析例题分析.你学过一元二次方程的哪些解法你学过一元二次方程的哪些解法?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗?.依据
3、:平方根的意义,即如果 x2=a,那么x=这种方法称为直接开平方法。方程的左边是方程的左边是完全平方式完全平方式,右边是非右边是非负数负数;即形如即形如x x2 2=a=a(a0)(a0).例例1、x24=0解:原方程可变形为解:原方程可变形为 x1=-2,x2=2X2=4.例例2、(、(3x-2)-49=0解:解:移项,得:(移项,得:(3x-23x-2)=49=49 两边开平方,得:两边开平方,得:3x-2=73x-2=7 所以:所以:x=x=所以所以x1=3x1=3,x2=-x2=-.归纳:直接开平方法的归纳:直接开平方法的特点:特点:形如形如x x2 2=a=a(a0)(a0).x2+
4、6x-7=0.什么是配方法?平方根的意义?完全平方公式?.配方法w我们通过配成完全平方式 ,然后直接开平方,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法w平方根的意义:w完全平方式:式子 a22ab+b2 叫完全平方式,且a22ab+b2=(ab)2.如果x2=a,那么x=用配方法解一元二次方程的方法的助手:.1.1.化化1:1:把二次项系数化为把二次项系数化为1 1;2.2.移项移项:把常数项移到方程的右边把常数项移到方程的右边;3.3.配方配方:方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平方;4.4.变形变形:化成化成5.5.开平方开平方,求解求解“配方法
5、配方法”解方程的基本步骤解方程的基本步骤一除、二移、三配、四化、五解一除、二移、三配、四化、五解.例例1.1.用配方法解下列方程用配方法解下列方程 x2+6x-7=0.例例2.2.用配方法解下列方程用配方法解下列方程 2x2+8x-5=0.用配方法解一般形式的一元二次方程用配方法解一般形式的一元二次方程 把方程两边都除以把方程两边都除以 解解:移项,得移项,得配方,得配方,得即即(a0).即即即即因为因为a0,所以所以4 0式子式子此时,方程有两个不等的实数根此时,方程有两个不等的实数根.即即即即因为因为a0,所以所以4 0式子式子此时,方程有两个相等的实数根此时,方程有两个相等的实数根0.即
6、即因为因为a0,所以所以4 0式子式子而而x取任何实数都不可能使取任何实数都不可能使 ,因此方程无实数根因此方程无实数根.一元二次方程的一元二次方程的求根公式求根公式(a0)当当0时,方程时,方程的实根可写为的实根可写为用求根公式解一元二次方程的方法用求根公式解一元二次方程的方法叫做叫做公式法。公式法。.w一般地一般地,对于一元二次方程对于一元二次方程 axax2 2+bx+c=0(a0)+bx+c=0(a0)w上面这个式子称为一元二次方程的求根公式求根公式.当当 00 时,方程有两个不同的根时,方程有两个不同的根当当 =0=0 时,方程有两个相同的根时,方程有两个相同的根当当 00 时,方程
7、无实数根时,方程无实数根.3 3、代入、代入求根公式求根公式 :X=X=(a0,(a0,b b2 2-4ac0-4ac0)1 1、把方程化成一般形式、把方程化成一般形式,并写出并写出a a,b b,c c的值。的值。2 2、求出、求出b b2 2-4ac-4ac的值。的值。用公式法解一元二次方程的一般步骤:用公式法解一元二次方程的一般步骤:求根公式求根公式:X=4 4、写出方程的解:、写出方程的解:x x1 1=?,x=?,x2 2=?=?(a0,b2-4ac0).公式法w例例1 1、用公式法解方程、用公式法解方程 5x5x2 2-4x-12=0-4x-12=0w1.1.变形变形:化已知方程化
8、已知方程为一般形式为一般形式;w3.3.计算计算:b b2 2-4ac-4ac的值的值;w4.4.代入代入:把有关数把有关数值代入公式计算值代入公式计算;w5.5.定根定根:写出原方写出原方程的根程的根.w2.2.确定系数确定系数:用用a,b,ca,b,c写出各项系写出各项系数数;学习是件很愉快的事学习是件很愉快的事.例例2.用公式法解方程用公式法解方程2x2+5x-3=0解解:a=2 b=5 c=-3 b2-4ac=52-42(-3)=49 x=即即 x1=-3 x2=求根公式求根公式:X=(a0,b2-4ac0).a=a=,b=b=,c=c=.b b2 2-4ac=-4ac=.x=x=.即
9、即 x x1 1=,x=,x2 2=.=.例例3:用公式法解方程:用公式法解方程x2+4x=2 1 14 4-2-24 42 2-41(-2)-41(-2)2424求根公式求根公式:X=(a0,b2-4ac0)解:移项,得解:移项,得 x x2 2+4x-2=0+4x-2=0这里的这里的a a、b b、c c的值是什么?的值是什么?.练习练习:用公式法解下列方程:用公式法解下列方程:1 1、x x2 2+2x=5+2x=52 2、6t6t2 2-5=13t-5=13t.例例4 4解方程:解方程:解方程:解方程:解解:结论:当结论:当结论:当结论:当时,一元二次方程有两个时,一元二次方程有两个时
10、,一元二次方程有两个时,一元二次方程有两个相等的实数根相等的实数根相等的实数根相等的实数根.例例 用公式法解方程:用公式法解方程:x x2 2 x-=0 x-=0解:方程两边同乘以解:方程两边同乘以 3 得得 2 x2-3x-2=0 a=2,b=-3,c=-2.b2-4ac=(-3)2-42(-2)=25.x=x=即即 x1=2,x2=-例例 用公式法解方程:用公式法解方程:x x2 2+3=2 x+3=2 x 解:移项,得解:移项,得x2 2-2 x+3=0-2 x+3=0a=1a=1,b=-2 b=-2 ,c=3c=3b b2 2-4ac=(-2 -4ac=(-2 )2 2-413=0-4
11、13=0 x=x=x x1 1=x=x2 2=.例例 3 解方程:(x-2)(1-3x)=6这里 a=3,b=-7,c=8.b2-4ac=(-7)2-438=49-96=-47 0,原方程没有实数根.解:去括号:x-2-3x2+6x=6化简为一般式:-3x2+7x-8=03x2-7x+8=0想一想想一想.我最棒 ,用公式法解下列方程w1).2x2x60;w2).x24x2;w3).5x2-4x 12=0;w4).4x2+4x+10=1-8x;w5).x26x10;w6).2x2x6;w7).4x2-3x-1=x-2;w8).3x(x-3)=2(x-1)(x+1);w9).9x2+6x+1=0;
12、w10).16x2+8x=3;w 参考答案:参考答案:.w参考答案:我最棒 ,解题大师规范正确!w解下列方程:w(1).x2-2x80;w(2).9x26x8;w(3).(2x-1)(x-2)=-1;.用用因式分解法因式分解法解一元二次方程解一元二次方程.解下列二次方程解下列二次方程1、(、(x-3)(x-1)=02、(x+6)(x-2)=03、x(x+5)=04、(x+2)(1-x)=05、(4-x)(x+7)=06、X(9-x)=0.1、x24=0解:原方程可变形为解:原方程可变形为(x+2)(x2)=0X+2=0 或或 x2=0 x1=-2,x2=2X24=(x+2)(x2)AB=0A=
13、0或或.x+2=0或或3x5=0 x1=-2,x2=提公因式法.用因式分解法解一元二次方程的步骤用因式分解法解一元二次方程的步骤1o方程右边化为方程右边化为 。2o将方程左边分解成两个将方程左边分解成两个 的的乘积。乘积。3o至少至少 因式为零,得到两个一因式为零,得到两个一元一次方程。元一次方程。4o两个两个 就是原方程就是原方程的解。的解。零一次因式有一个一元一次方程的解.解题框架图解题框架图解:原方程可变形为:=0()()=0 =0或 =0 x1=,x2=一次因式一次因式A 一次因式一次因式A一次因式一次因式B 一次因式一次因式B A解解 A解解 .用十字相乘法用十字相乘法解一元二次方程
14、解一元二次方程.x2+7x+12例例1、把下列各式分解因式、把下列各式分解因式=(x+3)(x+4)xx343x +4 x=7x.x2 3x-4例例1、把下列各式分解因式、把下列各式分解因式=(x+1)(x-4)xx+1-4 x -4 x =-3x .2x2+x-3例例1、把下列各式分解因式、把下列各式分解因式=(x-1)(2x+3)x2x-13-2x +3 x =x .解下列方程解下列方程1 1、x x2 23 3x x10=010=0解:原方程可变形为解:原方程可变形为 (x x5)(5)(x x+2)=0+2)=0 x x5=05=0或或x x+2=0+2=0 x x1 1=5,=5,x
15、 x2 2=-2=-2.解下列方程解下列方程2 2、(x x+3)(+3)(x x1)=51)=5解:原方程可变形为解:原方程可变形为 x x2 2+2+2x x8=0 8=0 (x x2)(2)(x x+4)=0+4)=0 x x2=02=0或或x x+4=0+4=0 x x1 1=2,=2,x x2 2=-4=-4.思考题:思考题:1、关于、关于x的一元二次方程的一元二次方程ax2+bx+c=0(a0)。当当a,b,c 满足什么条件时,方程的两根为互满足什么条件时,方程的两根为互为相反数?为相反数?2、m取什么值时,方程取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解
16、有两个相等的实数解.想一想:想一想:关于一元二次方程关于一元二次方程,当,当a a,b b,c c满足什么条件时,方程的两根互满足什么条件时,方程的两根互为相反数?为相反数?解:解:一元二次方程一元二次方程的解为:的解为:.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm的无盖的长方体盒子,那么截去的小正方形的边长为多少?.X-140X+3300=0n边长为30cm(注意,回答时单位不要漏掉).五、小结五、小结用公式法解一元二次方程的关键是解题步骤:用公式法解一元二次方程的关键是解题步骤:.最后代入公式最后代入公式当当时,有两个实数根时,有两个实数根当当时,方程无实数解时,方程无实数解.先先写出写出a a,b b,c c.再求出再求出.