1、_第二章 声波的基本性质及其传播规律在日常生活中存在各种各样的声音。例如,人们的交谈声、汽车喇叭声、机器运转声、演奏乐器的乐声等等。在所有各种声音中,凡是有人感到不需要的声音,对这些人来说,就是噪声。简单地讲,噪声就是指不需要的声音。为了对噪声进行测量、分析、研究和控制,需要了解声音的基本特性。本章介绍声波的基本性质及其传播规律。2. 1 声波的产生及描述方法2. 1. 1声波的产生各种各样的声音都起始于物体的振动。凡能产生声音的振动物体统称为声源。从物体的形态来分,声源可分成固体声源、液体声源和气体声源等。例如,锣鼓的敲击声、大海的波涛声和汽车的排气声都是常见的声源。如果你用手指轻轻触及被敲
2、击的鼓面,就能感觉到鼓膜的振动。所谓声源的振动就是物体(或质点)在其平衡位置附近进行往复运动。当声源振动时,就会引起声源周围空气分子的振动。这些振动的分子又会使其周围的空气分子产生振动。这样,声源产生的振动就以声波的形式向外传播。声波不仅可以在空气中传播,也可以在液体和固体中传播。但是,声波不能在真空中传播。因为在真空中不存在能够产生振动的媒质。根据传播媒质的不同,可以将声分成空气声、水声和固体(结构)声等类型。在噪声控制工程中主要涉及空气媒质中的空气声。在空气中,声波是一种纵波,这时媒质质点的振动方向是与声波的传播方向相一致。与之对应,将质点振动方向与声波传播方向相互垂直的波称为横波。在固体
3、和液体中既可能存在纵波,也可能存在横波。需要注意,声波是通过相邻质点间的动量传递来传播能量的。而不是由物质的迁移来传播能量的。例如,若向水池中投掷小石块,就会引起水面的起伏变化,一圈一圈地向外传播,但是水质点(或水中的飘浮物)只是在原位置处上下运动,并不向外移动。2. 1. 2 描述声波的基本物理量当声源振动时,其邻近的空气分子受到交替的压缩和扩张,形成疏密相间的状态,空气分子时疏时密,依次向外传播(图21)。图21空气中的声波当某一部分空气变密时,这部分空气的压强P变得比平衡状态下的大气压强(静态压强)P0大;当某一部分的空气变疏时,这部分空气的压强P变得比静态大气压强Po小。这样,在声波传
4、播过程中会使空间各处的空气压强产生起伏变化。通常用p来表示压强的起伏变化量,即与静态压强的差p =(PPo),称为声压。声压的单位是帕(斯卡),Pa。1帕= 1牛顿 / 米2如果声源的振动是按一定的时间间隔重复进行的,也就是说振动是具有周期性的,那么就会在声源周围媒质中产生周期的疏密变化。在同一时刻,从某一个最稠密(或最稀疏)的地点到相邻的另一个最稠密(或最稀疏)的地点之间的距离称为声波的波长,记为,单位为米,m。振动重复的最短时间间隔称为周期,记为T,单位为秒,s。周期的倒数,即单位时间内的振动次数,称为频率,记为f、单位赫兹,Hz,1赫兹 = 1秒 1。如前所述,媒质中的振动递次由声源向外
5、传播。这种传播是需要时间的,即传播的速度是有限的,这种振动状态在媒质中的传播速度称为声速,记为c ,单位为米每秒,m / s 。在空气中声速c = 331.45 + 0.61 t( m / s ) ( 2 1 )其中,t 是空气的摄氏温度( 0 C)。可见,声速c随温度会有一些变化,但是一般情况下,这个变化不大,实际计算时常取c为340米 / 秒。显然,在这些物理量之间存在相互关系:= c / f( 22) f = 1 / T( 23)图22声波传播的物理过程声波传播时,媒质中各点的振动频率都是相同的,但是,在同一时刻各点的相位不一定相同。同一质点在不同时刻也会具有不同的相位。所谓相位是指在时
6、刻t 某一质点的振动状态,包括质点振动的位移大小和运动方向,或者压强的变化。在图22中,质点A、B以相同频率振动,但是B比A在运动时间上有一定的滞后,C、 D、E 等质点在时间上依次相继滞后,当A质点处于最大压缩状态,即压强增大最大时,B、C、D、E质点处的压强程度递次减弱,以至在E点是处于最大膨胀状态。这就是说质点间在振动相位上依次落后,存在相位差。正是由于各个质点的振动在时间上有超前和滞后,才在媒质中形成波的传播。可以看出,距离为波长的两质点间的振动状态是完全相同的,只不过后者在时间上延迟了一个周期。2.2 声波的基本类型一般常用声压p来描述声波,在均匀的理想流体媒质中的小振幅声波的波动方
7、程是: (24 a ) 或记为: ( 24 b)其中2称为拉普拉斯算符,在直角坐标系中 , c为声速、t为时间。(24)式表明,声压p是空间(x、y、z )和时间t 的函数,记为 p ( x、y、z、t ),描述不同地点在不同时刻的声压变化规律。根据声波传播时波阵面的形状不同可以将声波分成平面声波,球面声波和柱面声波等类型。2. 2. 1平面声波当声波的波阵面是垂直于传播方向的一系列平面时,就称其为平面声波。所谓波阵面是指空间同一时刻相位相同的各点的轨迹曲线。若将振动活塞置于均匀直管的始端,管道的另一端伸向无穷。当活塞在平衡位置附近作小振幅的往复运动时,在管内同一截面上各质点将同时受到压缩或扩
8、疏,具有相同的振幅和相位。这就是平面声波。声波传播时处于最前沿的波阵面也称为波前。通常,可以将各种远离声源的声波近似地看成平面声波。平面声波在数学上的处理比较简单,是一维问题。通过对平面声波的详细分析,可以了解声波的许多基本性质。如果管道始端的活塞以正(余)弦函数的规律往复运动,则称为简谐振动。活塞偏离平衡位置的距离 称为位移。对简谐振动有 =0 cos (wtj )(25)其中,0为活塞离开平衡处的最大位移,称为振幅,w =2p f 称为角频率,t为时间,(wt+j) 为时刻t的相位,j为初相位。在均匀理想流体媒质中,小振幅平面声波的波动方程是:(26 )对于简谐声源,沿x正方向传播的平面声
9、波为p(x, t)=P0 cos(wtk xj)为了表述简洁,适当选取时间的起始值,或适当选取x轴的坐标原点。使j = 0,则有P( x , t ) = P0 cos (w t k x)( 27)其中,P0为振幅,k = w / c 称为波数。(a)(b)图23 声压P随时间t、空间坐标x 的变化波形(a)在确定时刻t0,声压p随空间坐标x的变化曲线(b)在定点位置x0,声压p随时间t的变化曲线如果观察在某一确定时刻t = t 0时声波在空间沿x分布的情况,其波形如图23 a。如果要观察在空间定点位置x = x 0处,声波随时间的变化情况,其波形如图23 b。假定在t = t 0时刻,空间x
10、= x 0位置处于某种物理状态(例如声压极大),由于声波的传播经过 t时间后,这种状态将传播到x 0+D x位置,由(27)式得P0 cos(w t0k x0) = P0 w(t0 +Dt)k(x0+ Dx)这就要求w Dtk Dx = 0因为k = w / c,所以(m / s)这也就是说,x 0处t 0时刻的声压经过Dt后传播到x 0+ Dx处,整个声压波形以速度c沿x正方向传播。声速c是波相位传播速度,也是自由空间中声能量的传播速度,而不是空气质点的振动速度u。质点的振动速度可由微分形式的牛顿第二定律求出:(28 )其中,ro 是空气的密度,单位为千克每立方米, kg / m3。对沿x正
11、方传播的简谐平面声波,质点的振动速度u x = U0 cos(w tk x)(29)其中,U0 = P0 /roc称为质点振动的速度振幅定义声阻抗率Z a= p/u(210)对于平面声波Z a=roc ,只与媒质的密度ro 和媒质中的声速c有关,而与声频的频率、幅值等无关,故又称 r c 为媒质的特性阻抗。单位为帕(斯卡)秒每立方米,Pa s / m3。 前面只讨论了沿x正方向传播的平面声波。对于沿x负方向传播的简谐平面声波,只要简单地 ( 27)式中的波数k用k代替就行了,即有p(x,t) = P0 cos(w t+k x)(211)与其相对应,对于沿x负方向传播的简谐平面声波,质点的振动速
12、度u x = U0 cos(w t+k x)(212)这时,U0 = -P0 /roc,与沿x正方向传播时的U0表达式相差一个负号。2.2.2 球面声波柱面声波当声源的几何尺寸比声波波长小得多时、或者测量点离开声源相当远时,则可以将声源看成一个点,称为点声源。在各向同性的均匀媒质中,从一个表面同步胀缩的点声源发出的声波是球面声波,也就是在以声源点为球心,以任何r值为半径的球面上声波的相位相同。球面声波的波动方程为: (213)可用p(r,t)来描述从球心向外传播的简谐球面声波,(214 )球面声波的一个重要特点是,振幅P0随传播距离r的增加而减少,二者成反比关系。波阵面是同轴圆柱面的声波称为柱
13、面声波,其声源一般可视为“线声源”。考虑最简单的柱面声波,声场与坐标系的角度和轴向长度无关,仅与径向半径w相关。于是有波动方程:(215)对于远场简谐柱面声波有:(216)其幅值由于的存在,随径向距离的增加而减少,与距离的平方根成反比。平面声波、球面声波和柱面声波都是理想的传播类型。在具体应用时可对实际条件进行合理近似,例如,可以将一列火车、或公路上一长串首尾相接的汽车看成不相干的线声源,将大面积墙面发出的低频声波视作平面声波等。2. 2. 3. 声线除了用波阵面来描绘声波的传播外,也常用声线来描绘声波的传播,声线也常称为声射线。声线就是自声源发出的代表能量传播方向的曲线,在各向同性的媒质中,
14、声线就是代表波的传播方向且处处与波阵面垂直的曲线。平面声波的传播方向总保持一个恒定方向,声线为相互平行的一系列直线。简单的球面波的声线是由声源点s发出的半径线(图24)。柱面波的声线是由线声源发出的径向线。图24球面声波声线立体图当声波频率较高,传播途径中遇到的物体的几何尺寸比声波波长大很多时,可以不计声波的波动特性,直接用声线来加以处理,其分析方法与几何光学中的光线法非常相似。2. 2. 4 声能量 声强 声功率声波在媒质中传播,一方面使媒质质点在平衡位置附近往复运动,产生动能。另一方面又使媒质不断地压缩扩张,产生形变势能。这两部分能量之和就是声波传播过程,使媒质具有的声能量。空间中存在声波
15、的区域称为声场。声场中单位体积媒质所含有的声能量称为声能密度,记为D,单位为焦(耳)每立方米,J / m3。声场中某点处,与质点速度方向垂直的单位面积上在单位时间内通过的声能称为瞬时声强,它是一个矢量。在指定方向n的声强In等于I.n。对于稳态声场,声强是指瞬时声强在一定时间T内的平均值。声强的符号为I,单位为瓦特每平方米,w / m2。同时,将单位时间内通过某一面积的声能称为声功率(或称为声能通量),单位为瓦,w。声源在单位时间内发射的总能量称为声源功率,记为P,单位为瓦(特),w。对于在自由空间中传播的平面声波:声能密度(217)声强 (218)声功率(219)在这三个公式中,符号顶部的“
16、”表示对一定时间T的平均,Pe是声压的有效值,对于简谐声波, S是平面声波波阵面的面积。2. 3 声波的叠加前面讨论的各类声波都是只包含单个频率的简谐声波。而实际遇到的声场,如谈话声、音乐声、机器运转声等,不只含有一个频率或只有一个声源。这样就涉及到声的叠加原理,各声源所激起的声波可在同一媒质中独立地传播,在各个波的交叠区域,各质点的声振动是各个波在该点激起的更复杂的复合振动。在处理声波的反射问题时也会用到叠加原理。2. 3. 1相干波和驻波假定几个声源同时存在,在声场某点处的声压分别为P1、P2、P3Pn,那么合成声场的瞬时声压P为:(220 ) 其中,pi为第i列波的瞬时声压。如果,两个声
17、波频率相同,振动方向相同,且存在恒定的相位差式中x1 与x2的坐标原点是由各列声波独自选定的,不一定是空间的同一位置。由叠加原理得:(221)由三角函数关系知:(222a) (222b)上述分析表明,对于两个频率相同振动方向相同,相位差恒定的声波,合成声仍是一个同频率的声振动。它们之间相位差( 223)与时间t无关,仅与空间位置有关,对于固定地点,x1和x2确定,所以是常数。原则上对于空间不同位置,会有变化。由(222a)式可知,合成声波的声压幅值PT在空间的分布随变化。在空间某些位置振动始终加强,在另一些位置振动始终减弱,此现象称为干涉现象。这种具有相同频率、相同振动方向和恒定相位差的声波称
18、为相干波。当= 0 ,2,4,时,PT为极大值,PTmax = P01 + P02;在另外一些位置,当=,3,5时,PT为极小值,TT min =P01P02,这种声压值PT随空间不同位置有极大值和极小值分布的声场,称为驻波声场。驻波的极大值和极小值分别称为波腹和波节。当P01与P02相等时,PTmax = 2 P01 ,PT min = 0,驻波现象最明显。从能量角度考虑,合成后总声场的声能密度(224)其中2. 3. 2. 不相干声波在一般的噪声问题中,经常遇到的多个声波,或者是频率互不相同,或者是相互之间并不存在固定的相位差,或者是两者兼有,也就是说,这些声波是互不相干的。这样,对于空间
19、定点j不再是固定的常值,而是随时间作无规变化,叠加后的合成声场不会出现驻波现象。且由于有(225)将其推广到几个声波状况,有(226a)或用声压表示(226b)上式表明,对于多个声波,当各个声波间不存在固位相位差时,其能量可以直接叠加。但是,如果要求某一时刻的瞬态值时,还应由来计数,两者不能混淆。2. 3. 3 声音的频谱实际生活中的声音很少是单个频率的纯音,一般多是由多个频率组合而成的复合声。因此,常常需要对声音进行频谱分析。若以频率f为横轴,以声压P为纵轴,则可绘出声音的频谱图。图25几个典型的声音频谱图(a)线状谱,(b)连续谱,(c)复合谱对于线状谱声音可以确定单个频率处的声压。对于周
20、期振动的声源,其产生的声音将是线状谱。其中,与振动周期相同的正弦式量频率称为基频,频率等于基频的整数倍的正弦式量称为谐波。例如某个周期振动声源的周期T =1 / 100秒,那么,其发出的声音的基频是100赫兹,二次谐波是200赫兹,三次谐波是300赫兹,依次类推。对于连续谱声音,不可能给出某个频率处的声压,只能测得某个频率f附近f带宽内的声压。显然,带宽不同所测得的声压(或声强)也会不同。对于足够窄的带宽f,定义w(f)= P2 / f (227)称为谱密度。 2. 4 声波的反射、透射、折射和衍射声波在空间传播是会遇到各种障碍物,或者遇到两种媒质的界面。这时,依据障碍物的形状和大小,会产生声
21、波的反射、透射、折射和衍射。声波的这些特性与光波十分相近。2. 4. 1 垂直入射声波的反射和透射当声波入射到两种媒质的界面时,一部分会经界面反射返回到原来的媒质中称为反射声波,一部分将进入另一种媒质中成为透射声波。以平面声波为例,入射声波Pi垂直入射到媒质和媒质的分界面,媒质的特性阻抗为r1c1,媒质的特性阻抗为r2c2,分界面位于x = 0处(图26)。图26 平面声波正入射到两种媒质的分界面所谓的分界面是相当薄的一层,因此在分界面两边的声压是连续相等的: p1 = p2 (228a )且因为两种媒质在各面密切接触,界面两边媒质质点的法向振动速度也应该连续相等,即u1 = u2 (228b
22、)将在媒质中沿x正方向传播的入射平面声波表示为:其中k1 = w / c1当Pi入射到x = 0处的分界面时,在媒质中产生沿x负方向传播的反射波Pr ,在媒质中产生沿x正方向传播的透射声波Pt , 分别表示为.其中k2 = w / c2在媒质中的声压在媒质中仅有透射声波,故相应的质点振动速度在x = 0界面处。声压连续和质点振动速度连续,故有:因此,只要知道入射声波Pi ,就能由上述两式求出反射声波Pr和透射声波Pt。通常,用声压的反射系数rp和透射系数p来表述界面处的声波反射、透射特性。由上述两式可以得到 (229a)(229b)同样,可以定义声强的反射系数r I和透射系数t I(230a)
23、(230b)由(230)可得r I + t I=1(231)即符合能量守恒定律当 r1 c 1 r2 c 2时,媒质比媒质“硬”些。若r1 c 1 r2 c 2时,称为“软”边界,若 r1 c 1 r2 c 2,则有rp= - 1 ,tp 0和 rI 1,tI 0,这样在媒质中、入射声压与反射声压在界面处,大小相等、相位相反,总声压达到极小,近等于零,而质点速度达到极大,在媒质中也产生驻波声场。2. 4. 2 斜入射声波的入射、反射和折射当平面声波垂直入射于两媒质的界面时,情况更为复杂,如图27所示,入射声波Pi与界面法向成 qi 角入射到界面上,这时反射波Pr与法向成 q r角,在第二个媒质
24、中,透射声波Pt与法向成q t角,透射声波与入射声波不再保持同一传播方向,形成声波的折射。图27声波的折射这时,入射声波、反射声波与折射声波的传播方向应满足Snell定律,即( 231) (231)式也可以写成反射定律:入射角等于反射角(232)折射定律:入射角的正弦与折射角的正弦之比等于两种媒质中的声速之比。(233)这表明若两种媒质的声速不同,声波传人媒质中时方向就要改变。当c2 c1时会存在某个qi值,qie =arc sin (c1 /c 2)使得 qr =p / 2 。即当声波以大于qie的入射角入射时,声波不能进入媒质中从而形成声波的全反射。关于入射声波、反射声波及折射声波之间振幅
25、的关系,仍可根据界面上的边界条件求得。在边界面上,两边的声压与法向质点速度(即垂直与界面的质点速度分量)应连续,即于是,可以得到(234a)(234b)通常,将入射声波在界面上失去的声能(主要是透射到媒质中去的声能)与入射声能之比称为吸声系数 a。由于能量与声压平方成正比,故有(235)由于rp的数值与入射方向有关,因此 a也与入射方向有关。所以在给出界面的吸声系数时,需要注明是垂直入射吸声系数,还是无规入射吸声系数。2. 4. 3声波的散射与衍射 如果障碍物的表面很粗糙(也就是表面的起伏程度与波长相当),或者障碍物的大小与波长差不多,入射声波就会向各个方向散射。这时障碍物周围的声场是由入射声
26、波和散射声波叠加而成。散射波的图形十分复杂,既与障碍物的形状有关,又与入射声波的频率(即波长与障碍物大小之比)密切相关。一个简单的例子,障碍物是一个半径为r的刚性圆球,平面声波自左向右入射。它的散射波声强的指向性分布如图28所示。当波长很长时,散射声波的功率与波长的四次方成反比,散射波很弱,而且大部分均匀分布在对着入射的方向。当频率增加,波长变短,指向性分布图形变得复杂起来。继续增加频率至极限情况时,散射波能量的一半集中于入射波的前进方向,而另一半比较均匀地散布在其他方向,形成心脏形图形,再加上正前方的主瓣。图28刚性圆球的散射声波强度的指向性分布由于,总声场是由入射声波与散射声波叠加而成的,
27、因此对于低频情况,在障碍物背面散射波很弱,总声场基本上等于入射声波,即入射声波能够绕过障碍物传到其背面形成声波的衍射。声波的衍射现象不仅在障碍物比波长小时存在,即使障碍物很大,在障碍物边缘也会出现声波衍射。波长越长,这种现象就越明显。例如,路边的防噪声屏障不能将声音(特别是低频声)完全隔绝就是由于声波的衍射效应。2. 4. 4 声像当声波频率较高,传播途径中遇到的物体的几何尺寸相对声波波长大很多时,常可暂时抛开声波的波动特性,直接用声线来讨论声传播问题,这与几何光学中用光线来处理问题十分相似。如图29所示,一个点声源S位于一个相当大的墙面附近,在空间R点的总声压为两者的叠加。若将墙面看成无限大
28、的刚性壁面,对入射声波作完全的刚性反射。反射波就可看成从一个虚声源S发出的。刚性壁面的作用等效于产生一个虚声源,好象光线在镜面的反射一样,称为镜像原理。虚声源S称为声源S的声像。在R点接收到的声波可由点声源S发出的球面波和虚声源S出的球面波之和求得:(236)图29声像式中,Pd和Pr分别为直达声和反射声的声压,r1和r2分别为S和S到R点的距离。当障碍物的几何尺寸远大于声波波长时,即对于高频声波,就可以应用声像法来处理反射问题。尤其是对一些不规则的反射面用波动方法难以处理,而用声像方法却很简单。当反射面不是刚性界面时仍可引入虚声源S,只是虚声源S的强度不等于实际声源S的强度,而需乘以复反射系
29、数rp。2. 5 级的概念日常生活中会遇到强弱不同的声音。这些声音的强度变化范围相当宽,人们正常说话的声功率约为10-5瓦,而强力火箭发射时的声功率高达10 9瓦,两者相差10 14数量级。对于如此广阔范围的能量变化,直接使用声功率和声压的数值来表示很不方便。另一方面人耳对声音强度的感觉并不正比于强度的绝对值,而更接近于正比其对数值。由于这两个原因,在声学中普遍使用对数标度。2. 5. 1 分贝的定义由于对数的宗量是无量纲的,因此用对数标度时必须先选定基准量(或称参考量),然后对被量度量与基准量的比值求对数,这个对数值称为被量度量的“级”,如果所取对数是以10为底,则级的单位为贝尔。由于贝尔的
30、单位过大,故常将1贝尔分为10档,每一档的单位称为分贝(dB)。如果所取对数是以e =2.71828为底,则级的单位称为奈培(Np)。奈培与分贝的相互关系:1Np = 8.686 dB2. 5. 2. 声压级、声强级和声功率级2.5.2.1 声压级声压级常用Lp表示,定义为:(dB)(237)其中,p为被量度的声压的有效值,p0为基准声压。在空气中规定p0 = 20pa,即为正常青年人耳朵刚能听到的1000HZ纯音的声压值。人耳的感觉特性,从刚能听到的210-5帕到引起疼痛的20帕,两者相差100万倍。用声压级来表示其变化范围为0120分贝。一般人耳对声音强弱的分辨能力约为0.5分贝。2.5.
31、2.2声强级声压级常用LI 表示,定义为(dB)(238)其中,I为被量度的声强,I0为基准声强。在空气中,基准声强I0取为10 -12瓦 /米2。对于空气中的平面声波,由(218)知则有在一个大气压下,38.90C空气的rc = 400瑞利。因此,在这个条件下对于空气中传播的平面声波有LI = Lp。在一般情况下,L的值是很小的,例如,在一个大气压下,0 0C空气的 rc = 428瑞利,L= -0.29dB, 200C空气的 rc = 415瑞利,L =0.16dB。因此,对于空气中的平面声波,一般可以认为LI Lp。2.5.2.3.声功率级声功率级常用Lw表示,定义为(dB) (239)
32、 其中w是指被量度的声功率的平均值,对于空气媒质,基准声功率w 0 =10 -12 瓦。考虑到声强与声功率之间的关系I =w / s 其中,s为垂直声传播方向的面积。则有将w0 = 10 -12瓦、I0 = 10 -12瓦/米代入便得到(dB)(240)对于确定的声源,其声功率是不变的。但是,空间各处的声压级和声强级是会变化的。例如,由点声源发出的球面波,在离源点r处,球面面积s = 4pr2,所以有(dB)(241)距离r增加1倍,声强级减小6 dB。当距离足够远时,有 。2. 5. 3 级的叠加由于级是对数量度,因此在求几个声源的共同效果时,不能简单地将各自产生的声压级数值算术相加,而是需
33、要进行能量叠加。对于互不相干的多个噪声源,它们之间不会发生干涉现象。这时,空间某处的总声压PT应有(226b)求得PT2 = P12 + P22 + +Pn2式中的声压是指有效值。以n = 2的情况为例,根据定义:对其求逆运算有P12 = 10 0.1 Lp1P22 =10 0.1Lp2这样由(226b)式得到总声压PT2 = P12 +P22 =10 0.1 Lp1 +10 0.1 Lp2总声压级(dB)(242a)对应n个声源的一般情况有(dB )(242b)将Lp1 = 80dB,Lp2 = 80dB代入,便得到总声压级LpT = 83dB,其结果是两个相同声压级的叠加是增加3分贝,而不
34、是增加1倍。(242a)式也可从两个声压级Lp1和Lp2的差值(假定Lp1 Lp2)求出合成的声压级。因为Lp2 = Lp1Lp,则有(243)图210分贝相加曲线(243)式还可绘成图210的分贝相加曲线。从而直接在曲线中查出两声压级叠加时的总声压级。例如,分贝,由曲线查得L = 2.2 分贝。即总声压级比第一声压级Lp1高出2.2分贝。如果Lp1比Lp2高出10分贝以上,Lp2对总声压级的贡献将可忽略,总声压级近似等于Lp1。需要注意,如果两个声源相关,它们发出的声波会发生干涉。这时应先由(220)式求出瞬时声压,再由瞬时声压求出总声压的有效值PT2,最后根据定义求出总声压级LpT。2.
35、5. 4级的“相减”在噪声测量时往往会受到外界噪声的干扰,例如存在测试环境的背景噪声(或称本底噪声),这时用仪器测得某机器运行时的声级是包括背景噪声在内的总声压级LpT。那么就需要从总声压级中扣除机器停止运行时的背景噪声声压级LpB。得到机器的真实噪声声压级Lps,这就是级的“相减”。由(242a)知LpT = 10 log 10 0.1 LpB + 10 0.1 Lp s (dB)因此,被测机器的声压级为Lps = 10 log 10 o.1 LpT 10 0.1 LpB (dB)(244)可见,级的“相减”实际上是声能量相减,而不是简单的分贝值算术相减。同样,可以令总声压级LpT与背景噪声
36、声压级LpB的差值为DLpB = LpTLpB,则求得差值DLps = LpTLps= 10 log 110 -0.1DLpB (dB)(245)(245)式也可绘成类似图210的分贝相减曲线。由LpT和LpB的差值DLpB查出修正值DLpS。级的相加和“相减”的实质是声能量的加减。因此,相应的公式不仅适用于声压级的运算,同样也适用于声强级和声功率级的运算。2. 6 声波在传播中的衰减声在传播过程中将产生反射、折射和衍射等现象,并在传播过程中引起衰减。这些衰减通常包括声能随距离的发散传播引起的衰减Ad和空气吸收引起的衰减Aa,地面吸收引起的衰减Ag,屏障引起的衰减Ab和气象条件引起的衰减Am等
37、。总的衰减值A则是各种衰减的总和:A = Ad + Aa + Ag + Ab + Am(246)2. 6. 1 距离衰减声波从声源向周围空间传播时会产生发散,最简单的情况是假设以声源为中心的球面对称地向各个方向辐射声能。对于这种无指向性的声波,声强I和声功率W之间存在简单关系: 其中,r是接收点与声源间的距离。当声源放置刚性地面上时,声音只能向半空间辐射,半径为r的半球面面积为2pr2,因此对半空间接收点可见,声强随着离开声源中心距离的增加,按反平方比的规律减小。若用声压级来表示,可得r处的声压:全空间:Lp = Lw 20 log r 11(dB)(247)半空间:Lp = Lw 20 lo
38、g r 8(dB)(248)因此,从r1处传播到r2处时的发散衰减(dB)(249)在实际情况中,还应考虑声辐射的指向性。此外应将公路上排列成串的车辆或长列火车等声源看成声源线。将厂房的大面积墙面和大型机器的振动外壳等看成面声源。关于线声源和面声源的辐射特性将在2. 7中介绍。2. 6. 2 空气吸收衰减声波在空气中传播时,因空气的粘滞性和热传导,在压缩和膨胀过程中,使一部分声能转化为热能而损耗。这种吸收称为经典吸收。此外,声波在媒质中传播时,还存在分子弛豫吸收。所谓弛豫吸收是指空气分子转动或振动时存在固有频率,当声波的频率接近这些频率时要发生能量交换。能量交换的过程都有滞后现象。它使声速改变
39、,声能被吸收。对于噪声控制工程,可以采用下面的简化公式来估算空气吸收衰减。在20 0C时 (dB)(250)其中f(Hz)是声波频率、D(m)是传播距离、f是相对湿度。对不同的湿度,可用下式估计(dB)(251)其中,DT是与20 0C相差的摄氏温度,b = 410 6。空气吸收衰减,特别在较低频率时,对温度变化不太敏感。 表2.1 标准大气压力下空气中的衰减,dB / 100 m 温度 湿度频 率Hz 0C 125 250 500 1000 2000 4000 10 0.09 0.19 0.35 0.82 2.6 8.8 20 0.06 0.18 0.37 0.64 1.4 4.5 30 3
40、0 0.04 0.15 0.38 0.64 1.2 3.2 50 0.03 0.10 0.33 0.75 1.3 2.5 70 0.02 0.08 0.27 0.74 1.4 2.5 90 0.02 0.06 0.24 0.70 1.5 2.6 10 0.08 0.15 0.38 1.21 4.0 10.9 20 0.07 0.15 0.27 0.62 1.9 6.7 20 30 0.05 0.14 0.27 0.51 1.3 4.4 50 0.04 0.12 0.28 0.50 1.0 2.8 70 0.03 0.10 0.27 0.54 0.96 2.3 90 0.02 0.08 0.26
41、 0.56 0.99 2.1 10 0.07 0.19 0.61 1.9 4.5 7.0 20 0.06 0.11 0.29 0.94 3.2 9.0 10 30 0.05 0.11 0.22 0.61 2.1 7.0 50 0.04 0.11 0.20 0.41 1.2 4.2 70 0.04 0.10 0.20 0.38 0.92 3.0 90 0.03 0.10 0.21 0.38 0.81 2.5 10 0.10 0.30 0.89 1.8 2.3 2.6 20 0.05 0.15 0.50 1.6 3.7 5.7 0 30 0.04 0.10 0.31 1.08 3.3 7.4 50 0.04 0.08 0.19 0.60 2.1 6.7 70 0.04 0.08 0.16 0.42 1.4 5.1 90 0.03 0.08 0.15 0.36 1.1 4.1比较准确的衰减值列于表2.