收藏 分销(赏)

高三物理简谐运动的公式描述.doc

上传人:精**** 文档编号:2319172 上传时间:2024-05-28 格式:DOC 页数:3 大小:357.33KB
下载 相关 举报
高三物理简谐运动的公式描述.doc_第1页
第1页 / 共3页
高三物理简谐运动的公式描述.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
简谐运动的公式描述 教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4)知道简谐运动的位移公式为x=Asin(ωt+),了解简谐运动位移公式中各量的 物理含义. (5)了解位相、位相差的物理意义. (6)能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1)通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1—3—1中数据的 比较,并描出z—t函数曲线,判断其结果,使学生获知匀速圆周运动在x方向的投影和 简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点, 难点 1. 简谐运动位移公式 x=Asin(ωt+)的推导 2. 相位, 相位差的物理意义.. ●教学过程 教师讲授 简谐振动的旋转矢量法 在平面上作一坐标轴OX,由原点O作一长度等于振幅的矢量A 。 t=0,矢量与坐标轴的夹角等于初相 矢量 A以角速度 w 逆时针作匀速圆周运动, 研究端点 M 在 x 轴上投影点的运动, 1. M 点在 x 轴上投影点的运动 x=Asin(ωt+)为简谐振动。 x代表质点对于平衡位置的位移,t代表时间, 简谐运动的三角函数表示 回答下列问题 a:公式中的A代表什么? b:ω叫做什么?它和f之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? 学生答 a:公式中的A代表振动的振幅. b:ω叫做圆频率,它与频率f之间的关系为:ω=2πf. c:公式中的ωt+表示简谐振动的相位. d:t=0时的相位叫做初相位,简称初相. 教师讲授 对于两个频率相同,振幅相等相位不同的振动,我们常用它们的相位差来比较它们所做的简谐运动 举例:设两个简谐运动的频率相同,则据ω=2πf,得到它们的圆频率相同,设它们的初相分别为1和2,它们的相位差就是 [ωt+2]-[ωt+]=2-1 相位的应用 ①:用投影片出示例题1: 两个简谐振动分别为 x1=4asin(4πbt+π) x2=2asin(4πbt+π) 求它们的振幅之比,各自的频率,以及它们的相位差. ②学生解答后,抽查在实物投影仪上评析: 解:据x=Asin(ωt+)得到 它们的相位差是. 巩固练习 1.右图中是甲乙两弹簧振子的振动图象,两振动振幅之比为_____,频率之比为____,甲的相位_____(填“超前”或“滞后”) 2.某简谐运动的位移与时间关系为:x=0.1sin(100πt+)cm, 由此可知该振动的振幅是______cm,频率是 Hz,零时刻振动物体的加速度与规定正方向______(填“相同”或“相反”). 参考答案: 1.2∶1;1∶1;超前 2.0.1;50;相反 四、小结 1.相位是用来描述一个周期性运动的物体在一个周期内所处的不同运动状态的物理量. 2.用三角函数式来表示简谐振动: x=Asin(ωt+) 其中x代表质点对于平衡位置的位移,t代表时间,ω叫做圆频率,ωt+φ表示简谐运动的相位. 3.两个具有相同圆频率w的简谐运动,但初相分别为φ1和φ2,它们的相位差就是 (ωt+2)-(ωt+1)=2-1
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中物理

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服