资源描述
______________________________________________________________________________________________________________
重视应用三角形中位线解题
姓名
一.利用现有中点,构造平行四边形
例1.(2007年株洲)如图,在四边形ABCD中,AB=CD,M、N、P、Q分别是AD、BC、BD、AC的中点;求证:MN与PQ互相垂直平分.
二.利用现有中点,构造全等三角形
例2.(2007年辽宁)如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) .
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
图①
图②
图③
A
·
B
C
D
E
F
·
·
·
(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上,
(2)成立.
证明:
法一:连结DE,DF.
∵△ABC是等边三角形, ∴AB=AC=BC.
又∵D,E,F是三边的中点,
∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°,
∴∠MDF=∠NDE.
在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE,
∴△DMF≌△DNE.
N
C
A
B
F
M
D
E
N
C
A
B
F
M
D
E
∴MF=NE.
法二:
延长EN,则EN过点F.
∵△ABC是等边三角形, ∴AB=AC=BC.
又∵D,E,F是三边的中点, ∴EF=DF=BF.
∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°,
∴∠BDM=∠FDN.
又∵DM=DN, ∠ABM=∠DFN=60°
∴△DBM≌△DFN.
∴BM=FN.
∵BF=EF, ∴MF=EN.
法三:
连结DF,NF.
∵△ABC是等边三角形,
∴AC=BC=AC.
又∵D,E,F是三边的中点,
∴DF为三角形的中位线,∴DF=AC=AB=DB.
又∠BDM+∠MDF=60°, ∠NDF+∠MDF=60°,
∴∠BDM=∠FDN.
在△DBM和△DFN中,DF=DB,
DM=DN, ∠BDM=∠NDF,∴△DBM≌△DFN.
∴∠B=∠DFN=60°
又∵△DEF是△ABC各边中点所构成的三角形,
∴∠DFE=60°.
∴可得点N在EF上,
∴MF=EN.
(3)画出图形(连出线段NE),
MF与EN相等的结论仍然成立(或MF=NE成立).
三.选择新中点,构造全等三角形
例3.(2007年广州)已知Rt△中,,在Rt△中,,连结,取 中点,连结和.
(1)若点在边上,点在边上且与点不重合,如图①,求证: 且;
(2)如图①中的△绕点逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
精品资料
展开阅读全文