收藏 分销(赏)

二次函数中求线段和差最短.doc

上传人:精*** 文档编号:2278092 上传时间:2024-05-24 格式:DOC 页数:5 大小:111.50KB
下载 相关 举报
二次函数中求线段和差最短.doc_第1页
第1页 / 共5页
二次函数中求线段和差最短.doc_第2页
第2页 / 共5页
二次函数中求线段和差最短.doc_第3页
第3页 / 共5页
二次函数中求线段和差最短.doc_第4页
第4页 / 共5页
二次函数中求线段和差最短.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、_二次函数压轴题专项练习(一) 由运动产生的线段和差问题一、线段的和最短问题例1、如图,已知抛物线的方程C1:与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m 的值(2)在(1)的条件下,求BCE的面积(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标对应练习:1、如图,已知抛物线经过A(4,0),B(2,3),C(0,3)三点(1)求抛物线的解析式及对称轴(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标变一:已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、(1)求

2、这条抛物线的函数表达式(2)已知在对称轴上存在一点P,使得的周长最小请求出点P的坐标ACxyBO1、如图,抛物线的顶点P的坐标为,交x轴于A、B两点,交y轴于点、(1)求抛物线的表达式(2)把ABC绕AB的中点E旋转180,得到四边形ADBC判断四边形ADBC的形状,并说明理由(3)试问在线段AC上是否存在一点F,使得FBD的周长最小,若存在,请写出点F的坐标;若不存在,请说明理由DOxyBEPACDOxyBEPCP变二:如图,已知抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC。(1)求A、B、C三点的坐标;(2)若点P为线段BC上的一点(不与B、C重合),PMy轴,

3、且PM交抛物线于点M,交x轴于点N,当BCM的面积最大时,求BPN的周长;(3)在(2)的条件下,当BCM的面积最大时,在抛物线的对称轴上存在点Q,使得CNQ为直角三角形,求点Q的坐标。1、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3)(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求ACE的最大面积及E点的坐标二、线段的差最短问题例2、如图,抛物线的

4、顶点为A,与y 轴交于点B(1)求点A、点B的坐标;(2)若点P是x轴上任意一点,求证:PA-PBAB;(3)当PA-PB最大时,求点P的坐标BOAxy1、如图,抛物线l交x轴于点A(3,0)、B(1,0),交y轴于点C(0,3)将抛物线l沿y轴翻折得抛物线l1(1)求l1的解析式;(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;2、如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。求该抛物线的解析式;动点P在轴上移动,当PAE是直角三角形时,求点P的坐标P。在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。Welcome ToDownload !欢迎您的下载,资料仅供参考!精品资料

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服