资源描述
第22章《二次函数》章节复习资料【1】
一.选择题(共10小题)
1.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )
A. B. C. D.
2.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
3.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A. B. C. D.
4.如图是二次函数y=ax2+bx+c的图象,下列结论:
①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )
A. B. C. D.
6.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )
A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7
7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是( )
A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1
8.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
…
y
…
4
0
﹣2
﹣2
0
4
…
下列说法正确的是( )
A.抛物线的开口向下 B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣
9.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是( )
A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,0
10.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值( )
A.y<0 B.0<y<m C.y>m D.y=m
二.填空题(共10小题)
11.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是 .
12.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是 (填入正确结论的序号).
13.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为 .
14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为 米.
15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是 .
16.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线 .
17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天销售利润最大.
18.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为 .
19.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为 .
20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为 m2.
三.解答题(共7小题)
21.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.
注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)
22.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.
(1)求y与x之间的函数关系式;
(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?
23.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.
(1)求抛物线的解析式;
(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
24.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
26.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
27.已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
第22章《二次函数》章节复习资料【1】
参考答案与试题解析
一.选择题(共10小题)
1.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )
A. B. C. D.
【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;
当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.
故选C.
2.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵二次函数y=ax2+bx+c图象经过原点,
∴c=0,
∴abc=0
∴①正确;
∵x=1时,y<0,
∴a+b+c<0,
∴②不正确;
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴是x=﹣,
∴﹣,b<0,
∴b=3a,
又∵a<0,b<0,
∴a>b,
∴③正确;
∵二次函数y=ax2+bx+c图象与x轴有两个交点,
∴△>0,
∴b2﹣4ac>0,4ac﹣b2<0,
∴④正确;
综上,可得
正确结论有3个:①③④.
故选:C.
3.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A. B. C. D.
【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD
=t2(0≤t≤3),即S=t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;
故选D.
4.如图是二次函数y=ax2+bx+c的图象,下列结论:
①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;
∵x=2时,y<0,∴4a+2b+c<0,②正确;
根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;
使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,
故选:B.
5.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )
A. B. C. D.
【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,
∴方程ax2+(b﹣1)x+c=0有两个不相等的根,
∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,
又∵﹣>0,a>0
∴﹣=﹣+>0
∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,
∴A符合条件,
故选A.
6.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )
A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7
【解答】解:∵二次函数y=x2+mx的对称轴是x=3,
∴﹣=3,解得m=﹣6,
∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.
故选D.
7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是( )
A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1
【解答】解:抛物线的对称轴为直线x=﹣,
∵当x>1时,y的值随x值的增大而增大,
由图象可知:﹣≤1,
解得m≥﹣1.
故选D.
8.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
…
y
…
4
0
﹣2
﹣2
0
4
…
下列说法正确的是( )
A.抛物线的开口向下
B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2
D.抛物线的对称轴是x=﹣
【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,
得:,解得:,
∴二次函数的解析式为y=x2+5x+4.
A、a=1>0,抛物线开口向上,A不正确;
B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;
C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;
D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.
故选D.
9.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是( )
A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,0
【解答】解:抛物线的对称轴是x=1,
则当x=1时,y=1﹣2﹣3=﹣4,是最小值;
当x=3时,y=9﹣6﹣3=0是最大值.
故选A.
10.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值( )
A.y<0 B.0<y<m C.y>m D.y=m
【解答】解:∵对称轴是x=,0<x1<
故由对称性<x2<1
当x=a时,y<0,
则a的范围是x1<a<x2,
所以a﹣1<0,
当x时y随x的增大而减小,
当x=0时函数值是m.
因而当x=a﹣1<0时,函数值y一定大于m.
故选C.
二.填空题(共10小题)
11.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是 y3>y1>y2 .
【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:
y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,
∵5﹣4<3<15,
所以y3>y1>y2.
故答案为y3>y1>y2.
12.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是 ②④ (填入正确结论的序号).
【解答】解:
∵二次函数开口向下,且与y轴的交点在x轴上方,
∴a<0,c>0,
∵对称轴为x=1,
∴﹣=1,
∴b=﹣2a>0,
∴abc<0,
故①、③都不正确;
∵当x=﹣1时,y<0,
∴a﹣b+c<0,
故②正确;
由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,
∴当x=2时,y>0,
∴4a+2b+c>0,
故④正确;
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∵﹣2<﹣,
∴y1<y2,
故⑤不正确;
综上可知正确的为②④,
故答案为:②④.
13.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为 1 .
【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,
∴抛物线的顶点坐标为(1,1),
∵四边形ABCD为矩形,
∴BD=AC,
而AC⊥x轴,
∴AC的长等于点A的纵坐标,
当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,
∴对角线BD的最小值为1.
故答案为1.
14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为 米.
【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),
到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,
可以通过把y=﹣1代入抛物线解析式得出:
﹣1=﹣0.5x2+2,
解得:x=,
所以水面宽度增加到米,
故答案为:.
15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是 m≥﹣2 .
【解答】解:抛物线的对称轴为直线x=﹣=﹣m,
∵当x>2时,y的值随x值的增大而增大,
∴﹣m≤2,
解得m≥﹣2.
故答案为:m≥﹣2.
16.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线 x=1 .
【解答】解:y=a(x+1)(x﹣3)
=ax2﹣2ax﹣3a
由公式得,
抛物线的对称轴为x=1.
17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 22 元时,该服装店平均每天的销售利润最大.
【解答】解:设定价为x元,
根据题意得:y=(x﹣15)[8+2(25﹣x)]
=﹣2x2+88x﹣870
∴y=﹣2x2+88x﹣870,
=﹣2(x﹣22)2+98
∵a=﹣2<0,
∴抛物线开口向下,
∴当x=22时,y最大值=98.
故答案为:22.
18.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为 (4,33) .
【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,
分析可得:当x=4时,y=33;且与p的取值无关;
故不管p取何值时都通过定点(4,33).
19.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为 ﹣1或2或1 .
【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,
当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,
解得:a1=﹣1,a2=2,
当函数为一次函数时,a﹣1=0,解得:a=1.
故答案为:﹣1或2或1.
20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为 75 m2.
【解答】解:设垂直于墙的材料长为x米,
则平行于墙的材料长为27+3﹣3x=30﹣3x,
则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,
故饲养室的最大面积为75平方米,
故答案为:75.
三.解答题(共7小题)
21.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.
注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)
【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,
解得:,
∴抛物线的解析式为y=﹣x2+2x+3;
(2)令x=0,则y=3,
∴C(0,3),
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4);
(3)设P(x,y)(x>0,y>0),
S△COE=×1×3=,S△ABP=×4y=2y,
∵S△ABP=4S△COE,∴2y=4×,
∴y=3,∴﹣x2+2x+3=3,
解得:x1=0(不合题意,舍去),x2=2,
∴P(2,3).
22.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.
(1)求y与x之间的函数关系式;
(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?
【解答】解:(1)当x=25时,y=2000÷(25﹣15)=200(千克),
设y与x的函数关系式为:y=kx+b,
把(20,250),(25,200)代入得:
,
解得:,
∴y与x的函数关系式为:y=﹣10x+450;
(2)设每天获利W元,
W=(x﹣15)(﹣10x+450)
=﹣10x2+600x﹣6750
=﹣10(x﹣30)2+2250,
∵a=﹣10<0,
∴开口向下,
∵对称轴为x=30,
∴在x≤28时,W随x的增大而增大,
∴x=28时,W最大值=13×170=2210(元),
答:售价为28元时,每天获利最大为2210元.
23.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.
(1)求抛物线的解析式;
(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)由题意得,,
解得b=4,c=3,
∴抛物线的解析式为.y=x2﹣4x+3;
(2)∵点A与点C关于x=2对称,
∴连接BC与x=2交于点P,则点P即为所求,
根据抛物线的对称性可知,点C的坐标为(3,0),
y=x2﹣4x+3与y轴的交点为(0,3),
∴设直线BC的解析式为:y=kx+b,
,
解得,k=﹣1,b=3,
∴直线BC的解析式为:y=﹣x+3,
则直线BC与x=2的交点坐标为:(2,1)
∴点P的坐标为:(2,1).
24.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;
(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,
∵x≥45,a=﹣20<0,
∴当x=60时,P最大值=8000元,
即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)由题意,得﹣20(x﹣60)2+8000=6000,
解得x1=50,x2=70.
∵抛物线P=﹣20(x﹣60)2+8000的开口向下,
∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.
又∵x≤58,
∴50≤x≤58.
∵在y=﹣20x+1600中,k=﹣20<0,
∴y随x的增大而减小,
∴当x=58时,y最小值=﹣20×58+1600=440,
即超市每天至少销售粽子440盒.
25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
【解答】解:(1)由已知得:C(0,4),B(4,4),
把B与C坐标代入y=﹣x2+bx+c得:,
解得:b=2,c=4,
则解析式为y=﹣x2+2x+4;
(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,
∴抛物线顶点坐标为(2,6),
则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.
26.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
【解答】解:(1)根据题意得B(0,4),C(3,),
把B(0,4),C(3,)代入y=﹣x2+bx+c得,
解得.
所以抛物线解析式为y=﹣x2+2x+4,
则y=﹣(x﹣6)2+10,
所以D(6,10),
所以拱顶D到地面OA的距离为10m;
(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),
当x=2或x=10时,y=>6,
所以这辆货车能安全通过;
(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,
则x1﹣x2=4,
所以两排灯的水平距离最小是4m.
27.已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
【解答】解:(1)∵二次函数的图象与x轴有两个交点,
∴△=22+4m>0
∴m>﹣1;
(2)∵二次函数的图象过点A(3,0),
∴0=﹣9+6+m
∴m=3,
∴二次函数的解析式为:y=﹣x2+2x+3,
令x=0,则y=3,
∴B(0,3),
设直线AB的解析式为:y=kx+b,
∴,
解得:,
∴直线AB的解析式为:y=﹣x+3,
∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,
∴把x=1代入y=﹣x+3得y=2,
∴P(1,2).
第22页
展开阅读全文