收藏 分销(赏)

第22章《二次函数》章节复习资料【1】【含解析】.doc

上传人:w****g 文档编号:2268802 上传时间:2024-05-24 格式:DOC 页数:22 大小:461.51KB
下载 相关 举报
第22章《二次函数》章节复习资料【1】【含解析】.doc_第1页
第1页 / 共22页
第22章《二次函数》章节复习资料【1】【含解析】.doc_第2页
第2页 / 共22页
第22章《二次函数》章节复习资料【1】【含解析】.doc_第3页
第3页 / 共22页
第22章《二次函数》章节复习资料【1】【含解析】.doc_第4页
第4页 / 共22页
第22章《二次函数》章节复习资料【1】【含解析】.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、第22章二次函数章节复习资料【1】一选择题(共10小题)1在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()ABCD2如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个3如图,RtAOB中,ABOB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()ABCD4如图是二次函数y=ax2+bx+c的图象,下列结论:二次三项式ax2+bx+c的最大值为4;4a+2b+c0;一元二次方程ax2+bx+

2、c=1的两根之和为1;使y3成立的x的取值范围是x0其中正确的个数有()A1个B2个C3个D4个5如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b1)x+c的图象可能是()ABCD6若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()Ax1=0,x2=6 Bx1=1,x2=7 Cx1=1,x2=7 Dx1=1,x2=77已知二次函数y=x2+(m1)x+1,当x1时,y随x的增大而增大,而m的取值范围是()Am=1 Bm=3 Cm1 Dm18二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x543210y

3、402204下列说法正确的是()A抛物线的开口向下B当x3时,y随x的增大而增大C二次函数的最小值是2D抛物线的对称轴是x=9在二次函数y=x22x3中,当0x3时,y的最大值和最小值分别是()A0,4 B0,3 C3,4 D0,010二次函数y=x2x+m(m为常数)的图象如图所示,当x=a时,y0;那么当x=a1时,函数值()Ay0B0ymCymDy=m二填空题(共10小题)11已知点A(4,y1),B(,y2),C(2,y3)都在二次函数y=(x2)21的图象上,则y1、y2、y3的大小关系是 12已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:abc0,ab+c0,2a=b

4、,4a+2b+c0,若点(2,y1)和(,y2)在该图象上,则y1y2其中正确的结论是 (填入正确结论的序号)13如图,在平面直角坐标系中,点A在抛物线y=x22x+2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为 14如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为 米15已知二次函数y=x2+2mx+2,当x2时,y的值随x值的增大而增大,则实数m的取值范围是 16抛物线y=a(x+1)(x3)(a0)的对称轴是直线 17某服装店购进单价为15元童装若干件,销售一段时间后发现:当

5、销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天销售利润最大18若抛物线y=2x2px+4p+1中不管p取何值时都通过定点,则定点坐标为 19若函数y=(a1)x24x+2a的图象与x轴有且只有一个交点,则a的值为 20某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为 m2三解答题(共7小题)21如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B(3,0),与y轴交于点C,连接BC交

6、抛物线的对称轴于点E,D是抛物线的顶点(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且SABP=4SCOE,求P点坐标注:二次函数y=ax2+bx+c(a0)的顶点坐标为(,)22某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?23如图

7、,抛物线y=x2bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由24为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元超市规定每盒售价不得少于45元根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价

8、,有关管理部门限定:这种粽子的每盒售价不得高于58元如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD(1)求此抛物线的解析式(2)求此抛物线顶点D的坐标和四边形ABCD的面积26如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m(1)求该抛物线的函数关系式,

9、并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?27已知二次函数y=x2+2x+m(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标第22章二次函数章节复习资料【1】参考答案与试题解析一选择题(共10小题)1在同一坐标系中,一次函数y=ax+2与二次函数y=x

10、2+a的图象可能是()ABCD【解答】解:当a0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限故选C2如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个【解答】解:二次函数y=ax2+bx+c图象经过原点,c=0,abc=0正确;x=1时,y0,a+b+c0,不正确;抛物线开口向下,a0,抛物线的对称轴是x=,b0,b=3a,又a0,b0,ab,正确;二次函数y=ax2+bx+c图象与x轴有两个交点,0

11、,b24ac0,4acb20,正确;综上,可得正确结论有3个:故选:C3如图,RtAOB中,ABOB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()ABCD【解答】解:RtAOB中,ABOB,且AB=OB=3,AOB=A=45,CDOB,CDAB,OCD=A,AOD=OCD=45,OD=CD=t,SOCD=ODCD=t2(0t3),即S=t2(0t3)故S与t之间的函数关系的图象应为定义域为0,3、开口向上的二次函数图象;故选D4如图是二次函数y=ax2+bx+c的图象,下列结论:二次三项式ax2+bx+c的最大值为4;4a+2b

12、+c0;一元二次方程ax2+bx+c=1的两根之和为1;使y3成立的x的取值范围是x0其中正确的个数有()A1个B2个C3个D4个【解答】解:抛物线的顶点坐标为(1,4),二次三项式ax2+bx+c的最大值为4,正确;x=2时,y0,4a+2b+c0,正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为2,错误;使y3成立的x的取值范围是x0或x2,错误,故选:B5如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b1)x+c的图象可能是()ABCD【解答】解:一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两

13、点,方程ax2+(b1)x+c=0有两个不相等的根,函数y=ax2+(b1)x+c与x轴有两个交点,又0,a0=+0函数y=ax2+(b1)x+c的对称轴x=0,A符合条件,故选A6若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()Ax1=0,x2=6Bx1=1,x2=7Cx1=1,x2=7Dx1=1,x2=7【解答】解:二次函数y=x2+mx的对称轴是x=3,=3,解得m=6,关于x的方程x2+mx=7可化为x26x7=0,即(x+1)(x7)=0,解得x1=1,x2=7故选D7已知二次函数y=x2+(m1)x+1,当x1时,y随x的增大而增大,而m的取值范围是

14、()Am=1Bm=3Cm1Dm1【解答】解:抛物线的对称轴为直线x=,当x1时,y的值随x值的增大而增大,由图象可知:1,解得m1故选D8二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x543210y402204下列说法正确的是()A抛物线的开口向下B当x3时,y随x的增大而增大C二次函数的最小值是2D抛物线的对称轴是x=【解答】解:将点(4,0)、(1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得:,解得:,二次函数的解析式为y=x2+5x+4A、a=10,抛物线开口向上,A不正确;B、=,当x时,y随x的增大而增大,B不正确;C、y=x2+5x+4=,二次函数的最

15、小值是,C不正确;D、=,抛物线的对称轴是x=,D正确故选D9在二次函数y=x22x3中,当0x3时,y的最大值和最小值分别是()A0,4B0,3C3,4D0,0【解答】解:抛物线的对称轴是x=1,则当x=1时,y=123=4,是最小值;当x=3时,y=963=0是最大值故选A10二次函数y=x2x+m(m为常数)的图象如图所示,当x=a时,y0;那么当x=a1时,函数值()Ay0B0ymCymDy=m【解答】解:对称轴是x=,0x1故由对称性x21当x=a时,y0,则a的范围是x1ax2,所以a10,当x时y随x的增大而减小,当x=0时函数值是m因而当x=a10时,函数值y一定大于m故选C二

16、填空题(共10小题)11已知点A(4,y1),B(,y2),C(2,y3)都在二次函数y=(x2)21的图象上,则y1、y2、y3的大小关系是y3y1y2【解答】解:把A(4,y1),B(,y2),C(2,y3)分别代入y=(x2)21得:y1=(x2)21=3,y2=(x2)21=54,y3=(x2)21=15,54315,所以y3y1y2故答案为y3y1y212已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:abc0,ab+c0,2a=b,4a+2b+c0,若点(2,y1)和(,y2)在该图象上,则y1y2其中正确的结论是(填入正确结论的序号)【解答】解:二次函数开口向下,且与

17、y轴的交点在x轴上方,a0,c0,对称轴为x=1,=1,b=2a0,abc0,故、都不正确;当x=1时,y0,ab+c0,故正确;由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,当x=2时,y0,4a+2b+c0,故正确;抛物线开口向下,对称轴为x=1,当x1时,y随x的增大而增大,2,y1y2,故不正确;综上可知正确的为,故答案为:13如图,在平面直角坐标系中,点A在抛物线y=x22x+2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1【解答】解:y=x22x+2=(x1)2+1,抛物线的顶点坐标为(1,1),四边形ABCD为矩形,BD=

18、AC,而ACx轴,AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,对角线BD的最小值为1故答案为114如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(2,0),到抛物线解析式得出:a=0.5,所以抛物线解析式为y=0.5

19、x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=1时,对应的抛物线上两点之间的距离,也就是直线y=1与抛物线相交的两点之间的距离,可以通过把y=1代入抛物线解析式得出:1=0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:15已知二次函数y=x2+2mx+2,当x2时,y的值随x值的增大而增大,则实数m的取值范围是m2【解答】解:抛物线的对称轴为直线x=m,当x2时,y的值随x值的增大而增大,m2,解得m2故答案为:m216抛物线y=a(x+1)(x3)(a0)的对称轴是直线x=1【解答】解:y=a(x+1)(x3)=ax22ax3a由公式得,抛物线的对称轴为x=11

20、7某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大【解答】解:设定价为x元,根据题意得:y=(x15)8+2(25x)=2x2+88x870y=2x2+88x870,=2(x22)2+98a=20,抛物线开口向下,当x=22时,y最大值=98故答案为:2218若抛物线y=2x2px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33)【解答】解:y=2x2px+4p+1可化为y=2x2p(x4)+1,分析可得:当x=4时,y=33;且与p的取值

21、无关;故不管p取何值时都通过定点(4,33)19若函数y=(a1)x24x+2a的图象与x轴有且只有一个交点,则a的值为1或2或1【解答】解:函数y=(a1)x24x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b24ac=164(a1)2a=0,解得:a1=1,a2=2,当函数为一次函数时,a1=0,解得:a=1故答案为:1或2或120某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+

22、33x=303x,则总面积S=x(303x)=3x2+30x=3(x5)2+75,故饲养室的最大面积为75平方米,故答案为:75三解答题(共7小题)21如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且SABP=4SCOE,求P点坐标注:二次函数y=ax2+bx+c(a0)的顶点坐标为(,)【解答】解:(1)由点A(1,0)和点B(3,0)得,解得:,抛物线的解析式为y=x2+2x+3;(2)令x=0,则y=3

23、,C(0,3),y=x2+2x+3=(x1)2+4,D(1,4);(3)设P(x,y)(x0,y0),SCOE=13=,SABP=4y=2y,SABP=4SCOE,2y=4,y=3,x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,P(2,3)22某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利

24、润最大?最大利润是多少元?【解答】解:(1)当x=25时,y=2000(2515)=200(千克),设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得:,解得:,y与x的函数关系式为:y=10x+450;(2)设每天获利W元,W=(x15)(10x+450)=10x2+600x6750=10(x30)2+2250,a=100,开口向下,对称轴为x=30,在x28时,W随x的增大而增大,x=28时,W最大值=13170=2210(元),答:售价为28元时,每天获利最大为2210元23如图,抛物线y=x2bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2(1

25、)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由【解答】解:(1)由题意得,解得b=4,c=3,抛物线的解析式为y=x24x+3;(2)点A与点C关于x=2对称,连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x24x+3与y轴的交点为(0,3),设直线BC的解析式为:y=kx+b,解得,k=1,b=3,直线BC的解析式为:y=x+3,则直线BC与x=2的交点坐标为:(2,1)点P的坐标为:(2,1)24为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一

26、种品牌粽子,每盒进价是40元超市规定每盒售价不得少于45元根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【解答】解:(1)由题意得,y=70020(x45)=20x+1600;(2)P=(x40)(20x+1600)=20x2+2400x64000=20

27、(x60)2+8000,x45,a=200,当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得20(x60)2+8000=6000,解得x1=50,x2=70抛物线P=20(x60)2+8000的开口向下,当50x70时,每天销售粽子的利润不低于6000元的利润又x58,50x58在y=20x+1600中,k=200,y随x的增大而减小,当x=58时,y最小值=2058+1600=440,即超市每天至少销售粽子440盒25如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y

28、=x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD(1)求此抛物线的解析式(2)求此抛物线顶点D的坐标和四边形ABCD的面积【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=x2+bx+c得:,解得:b=2,c=4,则解析式为y=x2+2x+4;(2)y=x2+2x+4=(x2)2+6,抛物线顶点坐标为(2,6),则S四边形ABDC=SABC+SBCD=44+42=8+4=1226如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m

29、时,到地面OA的距离为m(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=x2+bx+c得,解得所以抛物线解析式为y=x2+2x+4,则y=(x6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0

30、)或(10,0),当x=2或x=10时,y=6,所以这辆货车能安全通过;(3)令y=8,则(x6)2+10=8,解得x1=6+2,x2=62,则x1x2=4,所以两排灯的水平距离最小是4m27已知二次函数y=x2+2x+m(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标【解答】解:(1)二次函数的图象与x轴有两个交点,=22+4m0m1;(2)二次函数的图象过点A(3,0),0=9+6+mm=3,二次函数的解析式为:y=x2+2x+3,令x=0,则y=3,B(0,3),设直线AB的解析式为:y=kx+b,解得:,直线AB的解析式为:y=x+3,抛物线y=x2+2x+3,的对称轴为:x=1,把x=1代入y=x+3得y=2,P(1,2)第22页

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服