1、一元二次方程应用题总结分类及经典例题一元二次方程应用题总结分类及经典例题 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一元二次方程应用题总结分类及经典例题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为一元二次方程应用题总结分类及经典例题的全部内容。7一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点
2、列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等2、列一元二次方程解应用题的一般步骤:和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是: “审、设、列、解、答(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系这
3、一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要恰当灵活设元直接影响着列方程与解方程的难易;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程找出相等关系列方程是解决问题的关键;(4)“解”就是求出所列方程的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等因此,解出方程的根后,一定要进行检验3、数与数字的关系两位数=
4、(十位数字)10个位数字三位数=(百位数字)100(十位数字)10个位数字4、翻一番 翻一番即表示为原量的2倍,翻两番即表示为原量的4倍5、增长率问题 (1)增长率问题的有关公式: 增长数=基数增长率实际数=基数增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的(1增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则为:原来的(1增长率)下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤(1)整体地、系统地审读题意;(2)寻求问题中的等量关系(依据几何图形的性质);(3)设未知数,并依据等量关系列出方程;(4)正确
5、地求解方程并检验解的合理性;(5)写出答案7、列方程解应用题的关键(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数8、列方程解应用题应注意:(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的舍去。试题精选(一)商品销售问题售价进价=利润 单件
6、利润销售量=总利润 单价销售量=销售额1. 某商店购进一种商品,进价30元试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?3。服装柜在销售中发现某品牌童装平均每天可售出件,每件盈利元。为了迎接“六一”儿童节,商场决定
7、采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价元,那么平均每天就可多售出件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?(二)平均增长率问题变化前数量(1x)n变化后数量1. 青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为多少?2. 某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少?3. 某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?4. 为了绿化校园,某中学在2007年植树400棵,
8、计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。5. 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90,这样到期后,可得本金和利息共530元,求第一次存款时的年利率。(假设不计利息税)(三)面积问题判断清楚要设什么是关键1. 如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551。则道路的宽为是多少?2。在一幅长80cm,宽50cm的长方形风景画的四周镶一条金色纸边(如图所示),制成一幅长方形挂图。 如果要使整个挂图的面积是5400cm2,求金色纸边的宽为多少?3.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80,所截去的小正方形的边长是多少?4。王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率。(假设不计利息税)