收藏 分销(赏)

2001年7月高教自考数量方法真题及答案.doc

上传人:小****库 文档编号:220082 上传时间:2023-02-04 格式:DOC 页数:10 大小:166.50KB 下载积分:9 金币
下载 相关 举报
2001年7月高教自考数量方法真题及答案.doc_第1页
第1页 / 共10页
2001年7月高教自考数量方法真题及答案.doc_第2页
第2页 / 共10页
本文档共10页,全文阅读请下载到手机保存,查看更方便
资源描述
2001年7月自考数量方法试题 第一部分 必答题(满分60分) 本部分包括第一、二、三题,每题20分,共60分 一、 本题包括1-20题共20个小题,每小题1分,共20分。在每小题给四个选项中,只有一项符合题目要求,把所选项前的字母填在括号内。 1.8位学生五月份的伙食费分别为(单位:元): 360 400 290 310 450 410 240 420  则这8位学生五月份的伙食费的中数为    A.360  B.380  C.400  D.420 解答:将所给数据按升序排好:240 290 310 360 400 410 420 450  则中位数为,故选B 2.某航班的飞机每次乘満可以乘坐80名旅客,现随机抽取了10次航班,获得乘坐人数资料如下:     76 62 80 52 27 72 71 77 65 58 这10次航班的平均乘坐率为 A.64%  B.80%  C.66%  D.85% 解答:10个数据的平均值为: 所以平均乘坐率为:,故选B 3.某超市在过去80天的销售额数据如下:    销售额         天数    10万元以下       5    10万元-20万元以下   17    20万元-30万元以下   30    30万元-40万元以下   23    40万元以上        5 若随机抽取一天,其销售额在30万元以上的概率为 A.0.35 B.0.28 C.0.58 D.0.22 解答:其销售额在30万元以上的概率为,选A 4.设A,B是两个事件,则“这两个事件至少有一个发生”可以表示为: 则等于 解答:A表示A,B两个事件同时发生    B表示只有一个发生    C表示至少有一个发生    D表示两上都不发生 故选C 5.已知,则 A.0.6 B.0.7 C.0.8 D.0.9 解答:   于是, 选B 6.设离散型随机变量的分布律为     X   -1   0   1     P   0.3 0.5 0.2 则X的数学期望E(X)= A.0.2  B.-0.1 C. 0.1 D.-0.2 解答:数学期望的定义,所以 选B。 7.一大批计算机元件的正品率为80%,随机地抽取n个为样本,其中X个为正品,X的分布服从 A.正态分布 B.二项分布 C.泊松分布 D.均匀分布 解答: 元件只有正品和非正品两种情况,这是典型的两点分布。将其独立地重复n次,这是贝努利概型,或称二项分布。选B 8.比较两个总体均值是否相同的假设检验中,采用t检验的条件是 A.总体为正态分布,方差已知 B.总体为正态分布,方差未知 C.总体为非正态分布,方差已知 D.总体为非正态分布,方差未知 解答:选B。 9.若随机变量服从正态分布N(0,4),则随机变量Y=X-2的分布为:    A.N(-2,4)  B.N(2,4)  C.N(0,2)  D.N(-2,2) 解答:,所以选择A 10.采用随机抽样的正确理由是 A.使样本更精确    B.使样本更具代表性   C.使样本的效率更高  D.使抽样误差可以控制 解答:选C 11.某调查公司接受委托对某种化妆品的满意程度进行调查,评分在值在0分(完全不满意)和20分(非常满意)之间,随机抽取36名消费者,其平均值为12分,标准差为3分,根据调查结果对总体均值进行置信度为95%的区间估计,其结果应该是(z0.025≈2) A.9-15分 B.6-18分   C.11-13分  D.12-14分 解答:置信区间为,所以,选C。 12.假设检验中第二类错误是指 A.错误接受原假设的概率      B.错误接受备择假设的概率 C.错误接受这两种假设的概率    D.错误拒绝原假设的概率 解答:第一类错误是所谓的弃真,当拒绝时所犯的错误是第一类错误;第二类错误是取伪,当接受时所犯的错误是第二类错误。选A 13.为了测试喝啤酒与人体血液中酒精含量之间的关系,随机抽取了16人作试验,令x表示喝啤酒的杯数,y表示血液中酒精含量,对x与y做线性回归分析,获得下列数据    变量     系数    标准差    截距    -0.01270 0.01264    斜率    0.017964 0.002402 检验x与y之间是否存在线性关系的统计量t值是 A.-1.00    B.7.48  C.1.00  D.-7.48 解答:回归方程,其中截距是,斜率, 所以回归方程为,其中斜率的标准差是0.002402,于是,选B。 14.下面是对居民收入(x)与消费支出(y)数据拟合的线性回归方程,你认为正确的是 A. B.  C.  D. 解答:一般地,居民收入越高,则消费支出越大,即x与y之间应成正比才合理。所以选C。四个方程中只有C是增函数。 15.如果简单相关系数r=0,则表明两个变量之间 A.相关程度很低      B.不存在任何关系   C.不存在线性相关关系   D.存在非线性相关关系 解答:简单相关系数r=0表明两个变量不相关。选B。 16.在回归分析中,F检验主要是用来检验 A.相关系数的显著性   B.回归系数的显著性  C.线性关系的显著性   D.估计标准误差的显著性 解答:选C。回归系数的显著性是用t检验来检验的。 17.某百货公司2000年与1999年相比,商品销售额增长了15%,销售量平均增长了18%,则平均销售价格增减变动的百分比为 A.16.7%  B.-16.7%  C.2.5%  D.-2.5% 解答:销售额=销售量×销售价格,所以平均销售价格==0.975,所以平均销售价格增减变动的百分比为-2.5%,选D。 18.定基增长速度与环比增长速度之间的关系是 A.定基增长速度等于各环比增长速度的连乘积 B.定基增长速度等于各环比增长速度之和 C.定基增长速度等于各环比增长速度加1后的连乘积 D.定基增长速度加1等于各环比增长速度加1后的连乘积 解答:选D。 19.设p为商品价格,q为销售量,则指数综合反映了 A.商品销售额的变动程度 B.商品价格变动对销售额影响程度 C.商品销售量变动对销售额影响程度 D.商品价格和销售量变动对销售额影响程度 解答:这是报告期为权的价格指数。选B。 20.在指数体系中,总量指数与各因素指数之间的数量关系是 A.总量指数等于各因素指数之和  B.总量指数等于各因素指数之差 C.总量指数等于各因素指数之积  D.总量指数等于各因素指数之商 解答:选C。 二.本题包括21-24题共四个小题,共20分 1997年北京、南京、广州三城市月平均相对湿度(%)数据如下: 月份 1 2 3 4 5 6 7 8 9 10 11 12 北京 49 41 47 50 55 57 69 74 68 47 66 56 南京 76 71 77 72 68 73 82 82 71 75 82 82 广州 72 80 80 84 83 87 84 84 81 80 72 75 21.这组数据是时间序列数据?还是截面数据?还是平行数据?说明理由(4分) 解答:这是平行数据。因为它既有时间序列数据(1,2,…,12月份),又有截面数据(北京,南京,广州)。 22.“月份”是数量型数据还是分类型数据。(2分) 解答:月份是数量型数据 23.将北京和南京两城市的各月平均相对湿度数据分别制成茎叶图,并进行比较,得出适当的结论。(6分) 解答:     北京              南京    4|1 7 7 9         6|8    5|0 5 6 7         7|1 1 2 3 5 6 7    6|6 8 9           8|2 2 2 2    7|4 在北京各月平均相对湿度大约在40%-60%之间,而南京的各月平均相对湿度就要集中在70%左右,可以得出结论,南京的各月平均相对湿度要高于北京各月平均相对湿度。 24.计算三个城市各月平均相对湿度的中数和极差,并比较和分析这些结果(8分) 解答:北京的中位数为,极差为74-41=33 南京的中位数为,极差为82-68=14 广州的中位数为,极差为87-72=15 广州的数据按升序排好:72 72 75 80 80 80 81 83 84 84 84 87 广州的中位数要大于北京和南京两城市的。而北京的极差是最大的。这说明北京的干湿差别是相当大的,而广州和南京两城市的干湿差别相对较小。 三.本题包括25-28题共五个小题,共20分。 消费者投诉顺美酿造厂生产的瓶装酱油份量不足,酱油标明每瓶净重为250克,工商管理部门随机抽查了64瓶,平均净重为248.5克,标准差为4.8克。 25.建立原假设和备择假设H1。(5分) 解答:原假设H0:,备择假设H1: 26.这一问题应采用何种检验统计量。(5分) 解答:由于总体的方差未知的单边检验问题,由于是大样本,所以应采用U检验。即 27.计算检验统计量。(5分) 解答:。 28.若显著性水平为,说明什么情况下工商管理部门将认为该厂的酱油份量不足(5分) 解答:接受域界限为: 第二部分   选答题(满分40分) (本部分包括第四、五、六、七题,每题20分。任选两题回答,不得多选,多选者只按选答的前两题计分。) 四.本题包括29-32题共四个小题,共20分 工商银行长江路分行1995年平均存款余额为1250万元,2000年的存款资料如下: 时间 存款余额(万元) 1月1日 1510 3月1日 1530 7月1日 1540 9月1日 1550 12月31日 1570 29.该数列属于时期数列还是时点数列?(2分) 解答:该数列属于时点数列 30.计算该银行2000年的平均存款余额(7分) 解答:这是绝对数,时点,不等长时间间隔的时间序列求平均值问题。应采用公式: 所以该银行2000年的平均存款余额为 31.计算该银行1995年到2000年存款余额的年平均增长速度,并根据年平均增长速度推算2001年的年平均存款余额(7分) 解答:利用水平法计算存款余额的年平均发展速度为 所以增长速度为4.29%,根据此增长速度得2001年的年平均存款余额为1542.5×104.29%=1608.67(万元) 32.如果银行的目标是,到2005年年平均存款余额应达到2000万元,那么从2000年到2005年存款余额的年平均增长速度应达到什么水平?(4分) 五、本题包括33-36四个小题,共20分。 安康房地产公司认为工程的投标公司数与投标最低报价之间存在着一定的关系。为对此进行研究,公司抽取了8项类似的工程,所得数据如下: 投标公司数(个)x:  9  6  3  7  5  10  7  11 最低报价(百万元)y: 5.1 8.0 9.7 6.4 7.5 5.6 7.2 4.5 解答:设年平均发展速度为x,则根据题意,得:,则 33.画出散点图,并判断投标公司数与最低报价之间是否存在着线性相关关系。(4分) 解答: 34.计算投标公司数与最低报价之间的相关系数。(6分) 解答: x y x2 xy y2 9 5.1 81 45.9 26.01 6 8.0 36 48.0 64.0 3 9.7 9 29.1 94.09 7 6.4 49 44.8 40.96 5 7.5 25 37.5 56.25 10 5.6 100 56 31.36 7 7.2 49 50.4 51.84 11 4.5 121 49.5 20.25 58 54 470 361.2 384.76 相关系数: 35.拟合最低报价对投标公司数的回归方程,并说明回归系数的实际意义。(6分) 解答:设回归方程为,则正规方程为 ,即:,解之得 所以,回归方程为: 回归系数的实际意义是:当自变量投标公司数每变动一个单位时,因变量最低报价的平均变动的数额是-0.61。 36.计算判定系数,并说明其实际含义。(4分) 解答:判定系数,表示回归平方和占总变差的比例。即表示回归方程的拟合程度。越接近于1,则说明拟合的程度越好。 六.本题包括37-40四个小题,共20分 康达药业公司2000年第三季度和第四季度三种药品的销售数据如下: 药品名称 销售额(万元) 第四季度与第三季度相比价格提高(+) 或下降(-)的百分比% 第三季度 第四季度 甲 乙 丙 50 20 90 54 17 105 2 -5 6 37.要计算三种药品的价格综合指数,适合采用加权综合指数形式还是加权平均指数形式?(2分) 解答:因为要计算三种药品的价格综合指数,当然采用加权综合指数形式形式更好一些。但因为此题所给的是第四季度与第三季度相比的价格指数,而又给了销售额的值,所以为了便于计算,一定是采用总量加权的平均指数。所以此题应适合采用加权平均指数形式。 38.计算三种药品总销售额增长的百分比。(4分) 解答:三种药品总销售额指数为:,所以三种药品总销售额增长了10%。 39.用第四季度的销售额作为权数,计算三种药品的价格综合指数以及由于价格变动而影响的销售额。(8分) 解答:因为是用第四季度的销售额作为权数,所以是报告期总量加权,应采用调和平均。 甲、乙、丙三种药品的指数分别为:102%,95%,106%,第四季度的销售额分别为54,17,105, 所以,三种药品的价格综合指数为 其中由于价格的变动而使销售额增长了3.60%。 40.利用指数体系的关系推算三种药品的销售量综合指数以及由于销售量变动而影响的销售额。(6分) 解答:因为销售额=价格×销售量,所以三种药品的销售量综合指数为:。 即:销售量综合指数为=。所以由于销售量变动而使销售额增长了6.18%。 七.本题包括41-44四个小题,共20分 邻江市对商品零售额进行抽样估计,以每个商业企业作为抽样单位。在抽样中,把在工商部门登记注册的商业企业作为抽样框。抽样时,按注册资金多少把商业企业分为大型、中型和小型企业,然后在各类中分别随机抽取样本,并让样本户分别填报统计表,报送统计机关。统计机关发现有的企业按时填表,有的企业不能按时填报,为了及时汇总就按填报的单位计算平均数加以推断。 41.这种抽样称作什么抽样?(3分) 解答:这种抽样称作分层抽样。 42.这种抽样方法与简单随机抽样相比较有什么优点?(7分) 解答:这种抽样方法的优点是:(1)分层抽样除了获得总体的估计值以外,还可以用来对各层的子总体进行估计。(2)分层抽样可以按自然的地区或行政系统分层,使抽样的组织和实施比较方便。(3)分层抽样的样本分布在各个层内使样本的分布在总体内比较均匀。(4)适当的分配各层样本可以较大地提高抽样的精度。 43.抽样框存在什么问题?(5分) 解答:因为在抽样中,把在工商部门登记注册的商业企业作为抽样框,所以可能会漏掉那些未注册登记的商业企业,使推断出现偏差。 44.这种估计方法存在什么问题?(5分) 解答:由于无回答而使有效的样本量减少,从而使抽样误差增大。达不到原设计时调查精度的要求;
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 自考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服