收藏 分销(赏)

基本不等式专题.doc

上传人:快乐****生活 文档编号:2191311 上传时间:2024-05-22 格式:DOC 页数:9 大小:663.54KB
下载 相关 举报
基本不等式专题.doc_第1页
第1页 / 共9页
基本不等式专题.doc_第2页
第2页 / 共9页
基本不等式专题.doc_第3页
第3页 / 共9页
基本不等式专题.doc_第4页
第4页 / 共9页
基本不等式专题.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、(完整word)基本不等式专题 -完整版(非常全面)基本不等式专题辅导文档大全一、知识点总结1、基本不等式原始形式(1)若,则  (2)若,则2、基本不等式一般形式(均值不等式)若,则3、基本不等式的两个重要变形(1)若,则(2)若,则总结:当两个正数的积为定植时,它们的和有最小值;      当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当时取“="4、求最值的条件:“一正,二定,三相等"5、常用结论(1)若,则 (当且仅当时取“=”)(2)若,则 (当且仅当时取“=”)(3)若,则  (当且仅当

2、时取“=")(4)若,则(5)若,则特别说明:以上不等式中,当且仅当时取“=”6、柯西不等式   (1)若,则(2)若,则有:(3)设是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设均为正数,证明不等式:2、已知为两两不相等的实数,求证:3、已知,求证:4、 已知,且,求证:5、 已知,且,求证:6、(2013年新课标卷数学(理)选修4-5:不等式选讲设均为正数,且,证明:();   ()。7、(2013年江苏卷(数学)选修45:不等式选讲已知,求证:题型二:利用不等式求函数值域1、求下列函数的值域(1)      

3、   (2)(3)       (4)题型三:利用不等式求最值 (一)(凑项) 1、已知,求函数的最小值;变式1:已知,求函数的最小值;变式2:已知,求函数的最大值;练习:1、已知,求函数的最小值;     2、已知,求函数的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求的最大值;变式1:当时,求的最大值;变式2:设,求函数的最大值。2、若,求的最大值;变式:若,求的最大值;3、求函数的最大值; (提示:平方,利用基本不等式)变式:求函数的最大值;题型五:巧用“1"的代换求最值问题1、已知,求的最小值;法一:

4、法二:变式1:已知,求的最小值;变式2:已知,求的最小值;变式3:已知,且,求的最小值。变式4:已知,且,求的最小值;变式5:(1)若且,求的最小值;(2)若且,求的最小值;变式6:已知正项等比数列满足:,若存在两项,使得,求的最小值;题型六:分离换元法求最值(了解)1、求函数的值域;变式:求函数的值域;2、求函数的最大值;(提示:换元法)变式:求函数的最大值;题型七:基本不等式的综合应用1、已知,求的最小值2、(2009天津)已知,求的最小值;变式1:(2010四川)如果,求关于的表达式的最小值;变式2:(2012湖北武汉诊断)已知,当时,函数的图像恒过定点,若点在直线上,求的最小值;3、已

5、知,求最小值;变式1:已知,满足,求范围;变式2:(2010山东)已知,,求最大值;(提示:通分或三角换元)变式3:(2011浙江)已知,,求最大值;4、(2013年山东(理)设正实数满足,则当取得最大值时,的最大值为(    )()A     B      C       D(提示:代入换元,利用基本不等式以及函数求最值)变式:设是正数,满足,求的最小值;题型八:利用基本不等式求参数范围1、(2012沈阳检测)已知,且恒成立,求正实数的最小值;2、已知且恒成立,如果,求的最大值;(参考:4)(

6、提示:分离参数,换元法)变式:已知满则,若恒成立,求的取值范围;题型九:利用柯西不等式求最值1、二维柯西不等式   若,则2、二维形式的柯西不等式的变式3、二维形式的柯西不等式的向量形式4、三维柯西不等式若,则有:5、一般维柯西不等式设是两组实数,则有:题型分析题型一:利用柯西不等式一般形式求最值1、设,若,则的最小值为时, 析: 最小值为此时  ,,2、设,,求的最小值,并求此时之值。:3、设,求之最小值为              ,此时            (析:)4、(2013年湖南卷(理)已知则的最小值是           ()5、(2013年湖北卷(理)设,且满足:,,求的值;6、求 的最大值与最小值.(:最大值为,最小值为 -)析:令 = (2sinq,cosq,- cosq),= (1,sinf,cosf)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服