收藏 分销(赏)

动物行为学的研究方法.doc

上传人:精*** 文档编号:2188107 上传时间:2024-05-22 格式:DOC 页数:8 大小:54.05KB
下载 相关 举报
动物行为学的研究方法.doc_第1页
第1页 / 共8页
动物行为学的研究方法.doc_第2页
第2页 / 共8页
动物行为学的研究方法.doc_第3页
第3页 / 共8页
动物行为学的研究方法.doc_第4页
第4页 / 共8页
动物行为学的研究方法.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、动物行为学的研究方法第一节 概述 行为是基因与环境相互作用的结果。基因的变化(如转基因,基因敲除或下调等)最终表现为与基因相关的行为变化;环境的变化(如声、光、电的刺激和药物的处理)不仅其本身可直接影响动物的行为,而且可通过对相关基因的影响而改变动物的行为。学习和记忆更是这种相关基因与环境相互作用的行为表现的一种形式。学习是一个获得外界环境信息(对动物而言)或有关世界知识(对人类而言)的过程;记忆则是对这种信息或知识进行加工(encoding)、储存(storage)和再现(retrieval)的过程。人类的记忆复杂,包括对事件与物体的明晰记忆(explicit memory)或描述性记忆(d

2、eclarative memory)和与学习无关(如适应性和敏感性)或有关(如操作技术和习惯养成)的模糊记忆(implicit memory)或非描述性记忆(nondeclarative memory)。而动物记忆相对较为简单,包括短期记忆(shortterm memory)和长期记忆(long-term memory);前者一般持续几分钟到几小时,后者则持续24小时到数天.数周甚至更长时间。与此相对应得是工作记忆(working memory)和参考记忆(reference memory)。工作记忆是将获得的信息进行加工并储存较短的时间,因而代表短期记忆;参考记忆是指对在整个实验过程中(测试

3、的任何一天)均有用的信息进行加工储存的过程,因而代表长期记忆。记忆的脑机制非常复杂,迄今仍不清楚。早在20世纪40年代末,著名神经外科医生Wilder Penfield 第一个获得证据表明,记忆的加工可能是在人脑的某些特殊部位进行。他从上千例的病人观察到,电刺激病人的脑颞叶皮层(temporal lobes)会产生一连串对早期经验的回忆,病人称之为“经验反应”(experiential response)。几年后一次偶然的机会,为了给一个患癫痫长达10年的病人施行脑手术治疗,Penfield将病人双侧的海马杏仁核和部分颞叶皮层切除。术后发现,病人的癫痫症状大为改善。但出乎意料的是,病人的记忆同

4、时受到破坏性的损害。虽然病人保留了几秒到几分钟的短期记忆,且对手术前的事件有非常好的“长期记忆”,但是,他却不能将短期记忆转化为长期记忆。对人地点或物体等信息的保持不超过一分钟。而且,他的空间定位能力也大大受到削弱,甚至花了长达一年时间才学会走一条围绕一栋新房的路而不至迷路。事实上,所有因手术或疾病使内侧颞叶的边缘结构受到广泛损害的病人都具有类似的记忆缺陷。这些结果说明,大脑边缘系统在记忆调节中发挥重要作用。此后近半个世纪的研究表明,脑内至少存在5个不同的结构系统相对特异性地参与学习记忆的调节,包括海马、杏仁核、皮层(尤其是鼻周皮层,perirhinal cortex)、小脑和背侧纹状体。针对

5、这些脑结构建立了相应的具有一定特异性地学习记忆的行为测定方法。海马是空间记忆的最重要的调节脑区,同时也参与情绪记忆的调节。毁损海马回导致空间记忆的完全缺失,情绪记忆也会减弱,但不会完全消失。这是因为情绪记忆主要由杏仁核调节。测定杏仁核依赖的记忆主要用条件恐惧(fear conditioning)法;而测定海马依赖的记忆方法则很多,包括各种迷宫和抑制性回避(inhibitory avoidance)实验等。鼻周皮层是调节视觉物体记忆(visual object memory) 的特异性闹区,常用物体认知模型(object recognition)检测。小脑是调节与骨骼肌反应有关的经典反射的特异性

6、脑结构,眨眼反应(eyeblink conditioning)模型对小脑依赖的记忆有很高的特异性。纹状体对刺激-反应习惯(stimulus-response habit)的学习记忆过程其重要作用,主要调节与药物滥用有关的学习记忆。测定纹状体记忆的方法很少,目前主要用赢-留放射臂迷宫(win-stay radial arm maze)法。纹状体毁损会导致动物在这一模型上的记忆操作障碍,而毁损海马或杏仁核对这种记忆没有明显影响。说明赢-留放射臂迷宫法对纹状体记忆具有特异性。尽管记忆的发生机制仍不清楚,但越来越多的证据表明,环磷酸腺苷-蛋白激酶A(cyclic AMP-protein kinaseA

7、,Camp-PKA)信号系统对记忆起着重要的调节作用。激活与刺激性G蛋白(Gs)相偶联的受体会刺激腺苷酸化酶的活性,因而使cAMP形成增多,并激活PKA.PKA使cAMP反应单元结合蛋白(cAMP-responsive-element-binding protein, CREB)磷酸化并激活,从而促进与记忆相关的基因表达,最终使记忆增强。此外,分裂素激活蛋白激酶/细胞外信号调节激酶(mitogen activated protein kinase,MAPK/extracellular signal-regulated kinase,ERK)信号通路也以类似的磷酸化方式调节CREB的活性,进而调

8、节记忆。因此,除了用脑部结构毁损的方法从解剖上去除某一特定的脑内结构对记忆的调节功能以外,凡是能影响上述信号通路功能的药物(如NMDA受体拮抗剂MK-801和MEK抑制剂U0126减弱记忆;4-型磷酸二脂酶(type-4phosphodiesterase,PDE4)抑制剂则增强记忆)或有关的处理(如转基因或基因敲除或下调)均可影响学习记忆过程。学习记忆研究是当今生物医学界最为热门的领域之一。这方面的发展可谓日新月异。新的或经改良的研究方法和手段层出不穷。因此,本章不可能把所有有关学习记忆的研究方法逐一进行描述,只是选择一些有代表性的常用方法加以介绍。此外,所用仪器设备也不只局限于本章所介绍的内

9、容。在同一实验中,不同实验室所用仪器设备会有所不同,但实验结果应该一致。第二节 迷宫一、 Morris水迷宫本实验由美国科学家Richard GM Morris 于1981年建立。最初用于研究脑内结构对学习和记忆的调节作用,后来逐步发展成为目前最为常用的评价动物学习与记忆的模型。这一实验的基础是,啮齿类动物在水中有强烈的逃避水环境的动机,并以最快、最直接的途径逃离水环境。学会逃避水环境的过程体现动物的学习能力;根据周围环境进行空间定位,有目的地游往水中安全的地方(平台),体现动物的空间记忆能力。(一) 实验设备 实验用大鼠或小鼠进行。大鼠水迷宫实验设备由上海欣软信息科技有限公司制作,包括一个灰

10、色或黑色圆形水池(直径200cm,高100cm;小鼠规格尺寸减半)、一个平台(直径10cm)、一台跟踪摄像机以及摄像机相联的计算机(图25-1)。池内盛水,深50cm,水温为摄氏2224。平台置于水面下2cm(小鼠为1cm)。在水中加入奶粉或牛奶将水搅浑以免让动物看清水下平台。摄像机位于水池中央上方200cm,可记录动物的位置、游泳距离和时间(从而可计算出游泳速度)以及游泳路径等。房间周围墙壁上贴上色彩鲜明、形状不同的图画用为迷宫外暗示(extra-maze cues)。(二) 实验方法 分获得性训练、探查和对位训练3个过程。1获得性训练(Acquisition phase)理论上将水池分为4

11、个象限,平台置于其中一个象限区的中央。(1) 将动物(大鼠或小鼠)头朝池壁放入水中,放入位置随机取东、西、南、北四个起始位置之一。记录动物找到水下平台的时间(s)。在前几次训练中,如果这个时间超过60s,则引导动物到平台。让动物在平台上停留10s.(2) 将动物移开、擦干。必要时将动物(尤其是大鼠)放在150W的白炽灯下烤5min,放回笼内。每只动物每天训练4次,两次训练之间间隔1520min,连续训练5d。2探查训练(probe trial 1) 最后一次获得性训练结束后的第二天,将平台撤除,开始60s的探查训练。将动物由原先平台象限的对侧放入水中。记录动物在目标象限(原先放置平台的象限)所

12、花的时间和进入该象限的次数,以此作为空间记忆的检测指标。3对位训练(reveral phase) 测定动物的工作记忆(working memory)。探查训练结束后的第二天,开始维持4天的对位训练。将平台放在原先平台所在象限的对侧象限,方法与获得性训练相同。每天训练4次。每次记录找到平台的时间和游泳距离以及游泳速度。4对位探查训练(probe trial 2)最后一次对位训练的第二天进行。方法与上述探查训练类似。记录动物60s内动物在目标象限(平台第二次所在区)所花时间和进入该区的次数。(三) 注意事项1对比食物驱动的模型(如放射臂迷宫),水迷宫实验的最大优点在于,动物具有更大的、逃离水环境的

13、动机。而且不必禁食,特别适合老年动物的测试。加上它对衰老引起的记忆减弱尤其敏感,因此,水迷宫最常用于老年动物记忆的研究。2如用小鼠,除游泳池尺寸约为大鼠的50%以外,平台直径也较少(7.5cm)。实验方法与大鼠类似,但训练周期较短。一般获得性训练3天共训16次(第一天4次,后两天每天6次;两次训练之间的间隔510min,第四天为探查训练,第五、六天为对位训练,每天训练六次,第七天为第二次探查训练。3.如用肉眼观察,在所有试验过程中试验着始终坐在同一位置,距离泳池最近的边缘约60cm。4每天在固定时间测试。操作轻柔,避免不必要的应激刺激。5当与其他同类实验相比较时,要注意到动物的性别、品系、泳池

14、的尺寸和水温等多种因素对实验结果的影响。此外,当以游泳速度作为观察指标时,要考虑到动物的体重、年龄以及骨骼肌发育状况等对游泳速度可能造成影响。6用老年动物进行实验时,应确认动物的游泳能力和视力不因年龄增大而影响行为操作。其方法如下:将平台露出水面以使动物能够看见平台。动物放入泳池后如毫无困难地直接游向平台,说明动物的游泳能力和视力均正常,可以开始实验。7游泳对动物是一个较大的应激刺激,可引起神经内分泌的变化。这些变化可能对实验结果造成干扰。对老年动物,严重时可诱发心血管疾病而导致卒中甚至死亡。因此,必要时可将动物多次放入泳池或适当延长其游泳时间以增加动物对游泳的适应能力。8当用牛奶或奶粉搅浑泳

15、池的水时,要定期换水以免水腐败变质;如用白漆达到同样目的时,必须确保白漆对动物没有毒性。二、 放射臂迷宫放射臂迷宫(radial arm maze)实验也是最为常用的评价动物学习记忆能力的模型之一,由Olton等人于20世纪70年代中期建立。其基本依据是,控制进食的动物受食物的驱使对迷宫各臂进行探究;经过一定时间的训练,动物可记住食物在迷宫中的空间位置。该方法可同时测定动物的工作记忆(working memory)和参考记忆(reference memory)。所用动物包括大鼠、小鼠和鸽子。这一模型对脑区毁损和多种药物均很敏感。后者包括乙醇、东#(抗胆碱能药)和MK-801(NMDA受体拮抗剂

16、)等。(一) 实验设备 实验多数采用八臂放射迷宫,也有采用 十二臂或者二十四臂迷宫。这里介绍上海欣软信息科技有限公司生产的八臂迷宫。每个臂长41.9cm,宽11.4cm,高10.1cm;其上有一透明盖,两侧各有两个相对的光电管。迷宫中央八角形区的直径为27.4cm;上有一透明顶盖。中央区通往各臂的入口处有一活动门,用来对动物的出入臂进行控制。迷宫与计算机相联。也可用摄像跟踪系统(video tracking system)取代光电管来记录动物在迷宫内的活动行为。放置迷宫的房间内有一些外部暗示(extramaze cues)。动物在迷宫内可以看见这些暗示,并借此进行空间定位。实验用大鼠或小鼠进行

17、。(二)实验方法1动物适应实验环境1周后,称重,禁食24小时。此后每天训练结束后限制性地给予正常食料(据体重不同,大鼠16-20g,小鼠2-3g),以使体重保持在正常进食大鼠的80%85%。2第二天,迷宫各臂及中央区分撒着食物颗粒(每只45粒,直径约34mm)。然后,同时将4只动物置于迷宫中央(通往各臂的门打开)。让其自由摄食、探究10min。3第三天,重复第二天的训练。这一过程让动物在没有很强的应激条件下熟悉迷宫环境。4第四天起,动物单个进行训练:在每个臂靠近外端食盒处各放一颗食粒,让动物自由摄食。食粒吃完或10min后将动物取出。5第五天,将食物放在食盒内,重复前一天的训练,一天2次。6第

18、六天以后,随机选4个臂,每个臂放一颗食粒;各臂门关闭,将动物放在迷宫中央;30s后,臂门打开,让动物在迷宫中自由活动并摄取食粒,直到动物吃完所有4个臂的食粒。如经10min食粒仍未吃完,则实验终止。每天训练两次,其间间隔1h以上。记录以下4个指标:工作记忆错误(working memory errors),即在同一次训练中动物再次进入已经吃过食粒的臂;参考记忆错误(reference memory errors ),即动物进入不曾放过食粒的臂;总的入臂次数;测试时间,即动物吃完所有食粒所花的时间。此外,计算机还可记录动物在放射臂内及中央区的活动情况,包括运动距离和运动时间等。连续5次训练的工作

19、记忆错误为零、参考记忆错误不超过1次时,可以开始药物测试或脑内核团结构毁损实验。一般先给溶剂(如生理盐水),再给削弱记忆的药物(如东MK-801等),然后加用增强记忆的药物,剂量由低到高。(三) 计算与数据分析 用两个指标评价动物的记忆,即工作记忆错误频率(frequency of working memory errors) 和参考记忆错误频率(frequency of reference memory errors) ,分别等于工作记忆错误或参考记忆错误与总的入臂次数的比率。用这两个指标分别评价工作记忆与参考记忆。同时,计算平均探究时间(average exploration time),

20、即测试时间与总的入臂次数之比,为评价一般运动活性的指标。根据毁损的脑区结构或所给削弱记忆的药物的不同,工作记忆错误频率和/或参考记忆错误频率显著增高,记忆增强药物或治疗可使这种错误频率降低。(四) 注意事项1 小鼠放射迷宫设备和实验程序与大鼠类似,但迷宫规格应比大鼠迷宫小1/41/2,以免增加小鼠行为操作难度。2 本实验也可只用来测定工作记忆。方法中唯一不同的是,在所有放射臂均放置食粒,而不是只选4个臂放置食粒。3 慢性应激对动物的迷宫操作可产生影响,且存在性别差异。经过慢性应激以后,雄性大鼠记忆力减弱,表现为记忆错误频率增加;雄性大鼠的空间记忆反而增强,表现为错误频率减少。4 即使在限制进食

21、条件下,也应让大鼠体重每周增加5g,以免动物因营养不良而患病。剔除身体状态不良的动物。5 迷宫周围的任何一件物品均可被动物用来作为空间定为的标志。去除或移动这些标志可能使动物操作困难并降低迷宫臂选择的准确性。6 根据实验目的的不同迷宫放射臂的数目可不同,包括8、16、24、32、40和48臂迷宫。迷宫臂越少要求动物记住探究过的臂也越小,动物的行为操作就越简单。增加臂的数目一方面增加了对动物空间记忆的要求,另一方面也引入了更多的、有必要考虑的干扰因素(例如过去的迷宫学习对目前所测记忆的影响)。所以,通常使用8臂放射迷宫,既可减少不必要的、过多臂的干扰,又可缩短训练和测试所花的时间。7 所用食物通

22、常为小块的、带巧克力味(动物最喜欢的味道之一)或甜味的早餐圈(每块10mg);也可用液体食物(如巧克力奶或水)。后者对于测试某些影响动物对固体食物吞咽的药物(如东#)尤为实用。8 影响动物迷宫操作主要有两大因素:对迷宫或观察者的恐惧与动物探究习性和已知放在迷宫臂内食物的驱使。恐惧因素过强会阻止动物的迷宫操作,使动物始终停留在迷宫的某一个地方而不去探究。缺乏对食物的渴求也会产生类似结果,增加对动物的抚摸,必要时加高迷宫臂的侧墙,有助于减少动物的恐惧。如食物的驱使作用不足,可减少食物量,但必须同时监测体重和一般身体状况。通常大鼠体重不应低于禁食前的80%;对多数大鼠,体重降低15%即可。9 与水迷

23、宫不同,放射臂迷宫适合反复测试或长期记忆的测试。一般认为,工作记忆代表短期记忆,参考记忆代表长期记忆。三、T-形迷宫近半个世纪前,Kivy和Dember等人证明大鼠能辨别T-形迷宫(T-maze)两臂颜色的变化。他们发现,将雄性大鼠置于T-形迷宫的主干臂1530min,让其能看见、但不能进入黑白两臂。然后,改变其中一个臂的颜色,使两臂同为黑色或白色。让大鼠自由选择T-形臂。结果显示,大鼠总是选择改变了颜色的那个臂(新异臂)。这一过程要依靠动物的记忆来完成。由此发展而成的T-形迷宫实验成为目前用于评价空间记忆的最常用的动物模型之一。当然,现在的T-形迷宫使用的是食物而不是臂的颜色作为动物探究的动

24、力。通常用这一模型来研究动物的空间工作记忆(spatial working memory),即测定动物只在当前操作期间有用的信息。经改进后的T-形迷宫也可用来评价参考记忆(reference memory),即记录在这一实验中任何一天、任何一次的测试都有用的信息。(一)实验设备 这里介绍上海欣软信息科技有限公司制作的大鼠T-形迷宫。迷宫由两个长46cm、宽10cm、高10cm的目标臂(goal arms)和一个与之垂直的长71cm、同样宽度和高度的主干臂(stem)或起始臂(approach alley)组成。主干臂内置一个16cm*16cm的起始箱,并有一闸门与主干臂的另一部分相联。实验用雄

25、性成年大鼠。饮水不限,但进食控制在每天1620g,以使体重保持在非进食大鼠体重的85%。在整个训练和测试期间,大鼠体重每周增加不超过5g。(二) 实验方法 这里介绍传统T-形迷宫实验和T-形迷宫自主交替实验。1.传统T-形迷宫实验(1)适应 在T-形迷宫臂内分撒6粒食丸(45g),让大鼠适应迷宫5min,每天一次,连续5天。(2)强迫选择训练 将大鼠放入主干臂的起始箱,打开闸门,让大鼠进入迷宫的主干臂。随机、交替选择左右两臂之一放入4粒食丸,同时关闭另一臂,使动物被迫选择食物强化臂并完成摄食;每天6次,连续4天。(3)延迟位置匹配(delayed matching-to-position,DM

26、P)训练1)将动物放入闸门关闭的起始箱,打开闸门,让动物进入主干臂。2)关闭一侧目标臂,强迫动物进入另一侧开放臂以获得2粒食丸奖赏。3)立即(最短延迟,少于5s)将动物放回主干臂,开始匹配训练中的第二次训练;此时两个目标臂均开放。动物将两前肢和至少两后肢的一部分置于一个目标臂时完成“一次选择”。动物返回到强迫选择训练时进入过的臂则获得食物奖赏(4粒食丸),记录一次正确选择;若动物进入另一臂,则没有食物奖赏,并且将其限制在该臂内10秒,记录一次错误选择。4)一次匹配训练结束后将动物放回笼内510min(与此同时训练其他动物),再重复下一次匹配训练。每天8次。动物连续两天的正确选择次数达到15/1

27、6,则认为达到标准,可以开始实验。如动物经过30天训练仍然达不到标准,则予以淘汰。5)动物训练达标后一天,给予一次匹配训练。所不同的是,强迫选择训练后,将T-形迷宫旋转180度,再进行上述开放臂的训练。这样做的目的是评价动物是否为定位性操作(有赖于迷宫外信号)或反应性操作(不依赖迷宫外信号)。6)接着两天,每天给予10次匹配训练,每次训练间隔为60s,用以评价动物的工作记忆操作。记录进入食物强化臂的次数和再次进入非强化臂的次数。后者被认为是工作记忆错误。正常健康年轻的大鼠几乎每次均能准确操作。当操作稳定、且选择准确率高(工作记忆错误少于10%)时,可进行药物测试或脑区毁损后的操作实验。2T-形

28、迷宫自主交替实验(spontaneous altemation on a T-maze) 1925年,Tolman首次报道了一个有趣的发现:在迷宫实验中,大鼠极少重复进入迷宫的同一臂。大鼠以这种重复交替的方式探究周围环境。因而,即使没有食物奖赏,大鼠仍然保留对所探究区域有一定的新奇感。正常的交替操作与完整的工作记忆能力相一致。用药理或解剖毁损的方法可改变这种交替操作行为。实验方法如下:(1)充分抚摸大鼠 每天12min,连续57d。由于大鼠没有被剥夺进食,唯一对大鼠有驱动作用的是其探究迷宫的欲望。因此,动物必须对实验者和实验环境完全适应,没有恐惧感。充分触摸大鼠就显得尤为重要。(2)将大鼠放入

29、T-形迷宫的主干臂;打开闸门,让大鼠离开主干进入一个目标臂(四肢进入臂内)。(3)将大鼠放回主干臂,限其在臂内一段时间(零倒数分钟,但开始时设定5s比较合适)。(4)将第2和第3步的操作重复9次,记录进入每一臂的次数。对照大鼠在每一实验间期(共10次训练)内应交替选择两目标臂。实验结果表述为同一实验间期内交替次数除以总的选择次数。当使用药物或相关脑区毁损等方法减弱记忆力时,这个比率下降。(三) 注意事项1大鼠和小鼠具有良好的空间辨别功能,能很快学会并准确操作迷宫。因此,T-形迷宫和放射臂迷宫均被广泛用于测试动物的空间记忆能力。T-形迷宫用于研究不同脑区对空间记忆的影响。它对某些脑结构,尤其是海

30、马的毁损作用敏感。此外,许多药物或毒素都可增强或削弱动物在T-形迷宫的空间记忆。实验所用的动物除大鼠和小鼠外,还包括猪、羊、乌龟和鸽子等。2动物选择的准确性与两次选择之间的间隔及每一训练间期内的选择训练次数等有关。正常动物经短时间的间隔(例如5s),其选择准确性非常高。而经过极长时间的间隔(例如超过1h),其选择接近随机性操作。强迫选择训练后。如只给一次目标臂选择,准确性通常很高。但是,如给予多次选择,则选择次数越多,准确性越差。3啮齿类动物有单向偏爱的特性。这种单向偏爱与动物种属和品系有关。例如,C57BL/6J小鼠、ICR小鼠和Purdue-Wistar大鼠更偏爱左侧,而Spague-Da

31、wley大鼠和Wistar大鼠更偏爱右侧。研究表明,超过2/3的雄性Spague-Dawley大鼠偏爱右侧,而偏爱左侧的不到1/5。这种单向偏爱可影响对动物学习记忆的评价。4主干臂的闸门是T-形迷宫的重要特征。它既可用于在两次选择之间将动物限制在起始箱内一定的时间,也可防止动物在两次选择训练之间探究迷宫。因此,两次选择训练之间应将动物迅速放回主干臂内的起始箱。这一点很重要,它可确保动物不会去探究对侧目标臂。5当动物对迷宫或实验者的应激恐惧超过其对探究和觅食的渴望程度时,动物对迷宫的探究减少,甚至呆在迷宫某处不动而不去探究迷宫。这种恐惧表现为动物在迷宫内排便和排尿;当抓它时,动物还会发出尖叫声。

32、因此,足够的应激适应是必要的。否则,如果动物在迷宫内不进行臂的选择,就无从得知它的记忆力是正常还是减弱。四、巴恩斯迷宫巴恩斯迷宫(Barnes maze)是美国学者Carol A Barnes1979年发明的用于检测动物空间记忆的模型。与水迷宫和放射臂迷宫类似,巴恩斯迷宫利用啮齿类动物避光喜暗且爱探究的特性而建立的。动物获得的强化是从一个光亮、敞开的平台上面逃往位于平台下面的一个黑暗、狭小的箱里。该箱称为目标箱。经过训练,动物学习并记忆目标箱的位置。该模型对动物的应激性刺激较小,既不像放射臂迷宫那样需要禁食,也不像水迷宫那样应激性强。因此,在记忆研究中较为常用。尤其适用于与应激相关的记忆研究以

33、及基因敲除小鼠的行为表型研究。(一) 实验设备 不同厂家生产的巴恩斯迷宫大体相同。这里介绍上海欣软信息科技有限公司制作的巴恩斯迷宫。它是由不锈钢制成的一个圆形平台,可旋转,直径122cm。平台周边有18个或40个等距离圆洞,分别用于大鼠和小鼠;洞的直径分别为10cm和5cm。其中一个洞(称为目标洞)与一暗箱(即目标箱)相联。其他圆洞则为空洞,不与任何物体相联。暗箱设置成抽屉式,便于从中取出动物。从平台表面看不见目标箱。迷宫抬高140cm。动物通过目标洞可逃至目标箱内。对于小鼠巴恩斯迷宫的设置,也有不同的考虑。例如,有的将迷宫直径缩短(如88cm),洞的数目也减少(例如12个),洞的直径则与上述

34、相当。据认为,这样的设置有利于增加小鼠获得比率。但不管用哪种设置,实验操作都类似。通过训练,动物获得对目标洞的空间定位。(二) 实验方法1 实验开始前一天,将动物单个从目标洞置于目标箱内适应4min。2 将动物置于迷宫中央的塑料圆桶(直径20cm,高27cm)内限制活动5s。3 移开圆桶,启动计时器,实验者在挡帘后进行观察。动物四肢均进入目标箱,则计为一次逃避(escape),并让动物在箱内停留30s。每一动物一次最多观察4min。在此期间如果动物仍然找不到目标箱,则将动物从迷宫移开,放入目标箱内并停留30s。利用这一间隙清洁迷宫。动物每天训练两次,连续56d。4 从第二次训练开始,每次训练之

35、前将迷宫随机转动一至数个洞的位置,但目标箱始终固定在同一方位。这样做的目的是防止动物依靠气味、而非凭借记忆来确定目标洞的位置。实验记录以下参数:探究任何一个洞的潜伏期、到达目标箱的潜伏期和每只动物的错误次数(一次错误定义为动物把头伸向或探究任何一个非目标洞,包括专注于探究同一个非目标洞)。(三) 注意事项1 动物记忆力减弱,主要表现为动物成功获得一次逃避之前的错误次数比对照组增多,其次到达目标箱的潜伏期延长;探究任意洞的潜伏期可以延长,也可没有明显变化。记忆力增强则表现相反,即错误次数减少,到达目标箱的潜伏期缩短。2 动物在迷宫遗留的气味对下一只动物的迷宫操作影响很大。因此,除在两次训练之间旋转迷宫外,还要用70%酒精清洁迷宫,以消除残留气味对下一只动物的导向作用。3 巴恩斯迷宫平台类似一个大敞箱(open field),任何影响敞箱行为(自发活动)的因素(例如药物处理或基因改变)均可影响实验结果。4 品系差异 小鼠的爱探究特性使其成为巴恩斯迷宫研究的理想动物,但不同品系的小鼠在该实验中的行为表现差别很大。例如,129S6小鼠在巴恩斯迷宫中很少有探究行为,因而很难找到目标洞。而C57BL/6J小鼠则有相当多的探究行为,适合于巴恩斯迷宫实验。这一点在基因改变小鼠的记忆研究中尤其要注意。

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服