1、找规律专项训练一:数式问题1.(湛江)已知,若(a、b为正整数)则 2.(贵阳)有一列数a1,a2,a3,a4,a5,an,其中a1521,a2532,a3543,a4554,a5565,当an2009时,n的值等于( )A2010 B2009 C401 D3343.(沈阳)有一组单项式:a2,观察它们构成规律,用你发现的规律写出第10个单项式为 4.(牡丹江)有一列数,那么第7个数是 5.(南充)一组按规律排列的多项式:,其中第10个式子是() ABCD6.(安徽)观察下列等式:,(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性7.(绵阳)将正整数依次按下表规律排成四列,则根据表中
2、的排列规律,数2009应排的位置是第 行第 列第1列第2列第3列第4列第1行123第2行654第3行789第4行1211108.(台州)将正整数1,2,3,从小到大按下面规律排列若第4行第2列的数为32,则 ;第行第列的数为 (用,表示) 第列第列第列第列第行第行第行二:定义运算问题1. (定西)在实数范围内定义运算“”,其法则为:,求方程(43)的解2.有一列数,从第二个数开始,每一个数都等于与它前面那个数的倒数的差,若,则为()三:剪纸问题1 (2004年河南)如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是( ) 2 (2004年浙江湖州)小强拿了一张正方形的纸如图(10),沿
3、虚线对折一次得图,再对折一次得图,然后用剪刀沿图中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( ) 3 (2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,根据以上操作方法,请你填写下表:操作次数N12345N正方形的个数47103.yxOP1P2P3P4P5A1A2A3A4A5(第10题图)(莆田)如图,在轴的正半轴上依次截取,过点分别作轴的垂线与反比例函数的图象相交于点,得直角三角形并设其面积分别为则的值为 4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从
4、第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为 (用含n的代数式表示).(第4题)5.(丹东)如图6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚图6图案1图案2图案36.(抚顺)观察下列图形(每幅图中最小的三角形都是全等的),请写出第个图中最小的三角形的个数有 个第1个图第2个图第3个图第4个图(第16题图)7.(哈尔滨)观察下列图形: 它们是按一定规律排列的,依照此规律,第16个图形共有 个五:对称问题1.(伊春)在平面直角坐标系中,已知3个点的坐标分别为、. 一只电子蛙位于坐标原点处,第1次电子
5、蛙由原点跳到以为对称中心的对称点,第2次电子蛙由点跳到以为对称中心的对称点,第3次电子蛙由点跳到以为对称中心的对称点,按此规律,电子蛙分别以、为对称中心继续跳下去问当电子蛙跳了2009次后,电子蛙落点的坐标是(_ ,_). 2.(2004年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。3.(2004年资阳市)分析图(14),中阴影部分的分布规律,按此规律在图(14)中画出其中的阴影部分. 1、我们平常用的数是十进制数,如2639=2103+6102+3101+9100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用
6、的是二进制,只要两个数码:0和1。如二进制中101=122+021+120等于十进制的数5,10111=124+023122121120等于十进制中的数23,那么二进制中的1101等于十进制的数 。2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入12345输出 那么,当输入数据是8时,输出的数据是( ) A、 B、 C、 D、4、
7、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n个小房子用了 块石子。第4题6、如下图是用棋子摆成的“上”字: 第一个“上”字 第二个“上”字 第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n个“上”字需用 枚棋子。7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_颗.第7题图8、根据下列5个图形及相应点的个数的变化规律:猜
8、想第6个图形有 个点,第n个图形中有 个点。9、下面是按照一定规律画出的一列“树型”图: 经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”。10、观察下面的点阵图和相应的等式,探究其中的规律:(1)在和后面的横线上分别写出相应的等式;1=12;1+3=22;1+3+5=32; ; ;(2)通过猜想写出与第n个点阵相对应的等式_。第1次 第2次 第3次 第4次 11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_cm(用含n 的代数式表示)。12、如图
9、,都是由边长为1的正方体叠成的图形。例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。依此规律。则第(5)个图形的表面积个平方单位。(1)(2)(3)(4)13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )A 25 B 66 C 91 D 120 14、如图是由大小相同的小立方体木块叠入而成的几何体,图中有1个立方体,图中有4个立方体,图中有9个立方体,按这样的规律叠放下去,第8个图中小立方体个数是 .15、图1是棱长为a的小正方体,图2、图3由这样的小正方体摆放而成按照这样的方法继续摆放,由上而下分别叫第一层、第二层、第n层,第n层的小正方体的个数为s解答下列问题:图1 图2 图3 (1)按照要求填表:n1234s136 (2)写出当n=10时,s= 16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即)时,需要的火柴棒总数为 根;17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是 _ (n为正整数)5 / 5