1、公务员考试数学题分类训练(超 好用的)1.数量关系部分:9大问题为高频考点数量关系分为数字推理和数学运算两部分,共20 道题(5道数字推理、10道数学运算)。数字推理常涉及 等差数列、等比数列、赛次数列、质数数列等,数学运 算主要是对应用题的分析,考察考生的理解、把握事物 间量化关系和解决数量关系问题的技能。高频考点包括:路程问题、价格问题、工作效率问题、浓度问题、概率 问题、比例问题、集合问题、排列组合问题、利息问题 等。2.判断推理部分:图形重组为难点,结论型试题 为核心判断推理部分包括图形推理、定义判断、逻辑判断、类比推理四类,题量较大,一般为4045题,图形推 理5道左右,定义判断10
2、道,逻辑判断10道,类比推 理10道。图形推理涉及的类型有一组图形、图形类比、九宫 图形、图形的重组;逻辑判断大部分为结论型题型,其他 题型如削弱型、加强型比例也在慢慢增加,应加强此类 试题的练习。此类题型虽然看似很难,但是规律性极强。定义判断一般包括单定义辨析和多定义辨析两种题 型,且以法律概念为主。在回答多定义判断时,一定要 看清题目,把握好定义项、被定义项、定义连项三者之 间的对应关系,选准选对。而且近些年的试题在这一部 2分上难度有所下降,三者之间的关系比较好理顺。3.言语理解与表达:主旨题定胜负言语理解与表达部分,题量很大,每年都在40道题 左右,其中分值较多的题目都集中在片段阅读部
3、分,而 片段阅读部分的分值又都集中于主旨类题上,所以在备 考时一定要认真的复习这一部分。这一部分试题给考生 的感觉是很模糊,但其实这部分考试是比较好得分的一 个环节,因为题干中会提供很多的线索,随着题型框架 的锁定,每种题型的解法和规律也会一目了然,所以同 数学部分试题相比较易得分,但前提是考生是否能把握 到规律所在。4.资料分析部分:国家统计局各类图表须会读一般为五个大题,每题设5个问题,资料分析部分 各年之间的差别不大,资料分析的材料主要就是文字材 料、图形材料、表格材料这三大类,考生按常规思路准 备即可。历年国考及省考都曾出现引用国家统计局相关数据 信息出题的情况,所以,各类型图、表考生
4、须提前熟悉,只有认识了图表才能学会应对。此外,在金融危机的大前提下,省考资料分析题很可能 会以金融危机中各类经济指标为统计对象设计试题,所 以,考生应对经济领域的相关术语有所了解,比如信贷、工业增加值、GDP、同比、环比、产业增长值增长率等3等。这对考生沉淀这部分试题的知识储备有着非常直接 和有效地意义。5.知觉速度与准确性部分:熟练的掌 握试题特点是唯一方法。虽然公务员的试题看上去千变 万化,但是应试考试就一定存在规律和技巧,就是矛和 盾一样,但是规律是通过的练习和训练才能总结出来的,只有充分的熟悉各种题型的特点才能做到以不变应万 变,所以要坚持在规范的题型框架下去练习各种题型,通过同等的大
5、量的训练去培养自己的思维方式、提高自 己的反应特点,最终在考试极高的强度下快速的分辨出 相应题型和它们的技巧,做到最大胜算。希望各位考生 在深入了解国考招考及试题特点上,有针对性的进行复 习,一定会取得事半功倍的效果。数学应用题一直都是考生比较头痛的问题,甚至很多考 生会想到放弃。其实该类型的题难度并不是很大,只是 做起来就很难同时保证速度和准确率,因此掌握一定的 方法就显得尤为重要。要想解答好数学应用题必须应用 题各种题型搞清楚,了解了各种题型,我们还要清楚解 题思路方法,寻找解题捷径,在最短的时间内,高质量 的完成题目。数学应用题主要有以下几种应用题型:一、浓度问题;二、植树问题;三、行程
6、问题;四、年龄问题;五、5流水问题;六、工程问题;七、比例分配问题;八、利 润问题等。下面让我们再次重温一下这些经典的数学运 算应用题型。一、浓度问题【例题】浓度为70%的酒精溶液100克与浓度为20%的酒精溶液400克混合后得到的酒精溶液的浓度是多 少?()A.30%B.32%C.40%D.45%【解析】A。100克70%的酒精溶液中含酒精100X70%=70 克;400克20%的酒精溶液中含酒精400X20%=80克;混合后的酒精溶液中含酒精的量=70+80=150克;混合后的酒精溶液的总重量=100+400=500克;混合后的酒精溶液的浓度=150/500X100%=30%,选 择A。二
7、、植树问题【例题】在圆形的花坛周围植树,已知周长为50米,如果每隔5米种一棵树的话,一共可以种多少棵?()A.9 B.10 C.11 D.12【解析】B。此题是完全封闭的圆形上标点,其数量容 易想到,即一个线段围成一个封闭的几何图形的话,其 中的起点与终点重叠在一起,即比原来少了一个点,在 6未封闭的图形种的点的数量是比分段比例多一个,比如 ns米的线段,在每段s米点一个点,那么一共有n+1个 点,这与图形的形状是没关系的。在解这一类型的题时,只要注意一下有没有封闭,然后的具体计算就比较简单 To选择B。三、路程问题【例题】一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙
8、港,共用了 12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度 是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为()A.44千米B.48千米C.30千米D.36千米【解析】Ao顺流速度-逆流速度=2X水流速度,又顺流 速度二2X逆流速度,可知顺流速度=4X水流速度=8千米/时,逆流速度=2X水流速度二4千米/时。设甲、丙两港 间距离为X千米,可列方程X+8+(X-18)4-4=12解得 X=44O选择A。四、年龄问题【例题】爸爸、哥哥、妹妹现在的年龄和是64岁。当 爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年 龄是妹妹的2倍时,爸爸34岁。现在爸爸的年龄是多 少岁?
9、()A.34 B.39 C.40 D.42【解析】Co代入法解答此题:A项,爸爸34岁时,哥 7哥的年龄是妹妹年龄的2倍,二人的年龄和为64-34=30,则哥哥20岁时,妹妹10岁,验证,妹妹9岁时,哥哥19岁,爸爸年龄是33岁,爸爸年龄不是哥哥的3 倍,排除A项。理可排除B、D两项。选择C。五、流水问题【例题】一只轮船在208千米长的水路中航行。顺水用 8小时,逆水用13小时。求船在静水中的速度及水流的 速度。A.4km/h B.5km/h C.6km/h D.7km/h【解析】B此船顺水航行的速度是:2084-8=26(千米/小时)此船逆水航行的速度是:2084-13=16(千米/小时)由
10、公式船速二(顺水速度+逆水速度)+2,可求出此船 在静水中的速度是:(26+16)4-2=21(千米/小时)由公式水速=(顺水速度-逆水速度)+2,可求出水流 的速度是:(26-16)4-2=5(千米/小时)选择B。六、工程问题【例题】有甲,乙两项工程,现在分别由A,B两个施工队 队完成.在晴天,A施工队完成任务要12天,B施工队完 成要15天,在雨天,A施工队的工作效率下50%,B施工 队的工作效率要下降25%.最后两施工队同时开工并完 8成这两项工程,则在施工的日子里,晴天有()A.6 B.8 C.9 D.10【解析】A。此类问题传统解法可列方程求解。设晴天X 天,雨天Y天,得出方程式:X
11、/12+Y/(12X2)=X/15+Y/(15X4/3)结果 X/Y=l/2,即晴天为12/2答案选A。七、比例问题【例题】一所学校一、二、三年级学生总人数450人,三个年级的学生比例为2:3:4,问学生人数最多的年 级有多少人?A.100 B.150 C.200 D.250【解析】Co解答这种题时,可以把总人数看做包括了 2+3+4=9份,其中一年级占九份中的两份,二年级占三 份,三年级占四份,因此,人数最多的是三年级,其占 总人数的4/9,所以答案是200人。选C o 八、利润问题【例题】某商品按定价出售,每个可以获得45元的利 润,现在按定价的八五折出售8个,按定价每个减价35 元出售1
12、2个,所能获得的利润一样。这种商品每个定 价多少元?A.100 B.120 C.180 D.200【答案及解析】Do每个减价35元出售可获得利润(45-35)义12二120元,则如按八五折出售的话,每件商品 9可获得利润120+8=15元,少获得45 15=30元,故每 个定价为30+(1-85%)=200元。以上是数学运算里的几种主要的应用题型,也是在每年 的行测考试中都会出现的题型。【网络综合-公务员考试试题】:浓度问题就是指溶液的浓度变化问题。解决浓度问题,我们首先要了解溶液、溶剂、溶质和浓度的关系,根据 溶液浓度的前后变化解决问题。溶度问题包括以下几种基本题型:1、溶剂的增加或减少引起
13、浓度变化。面对这种问题,不论溶剂增加或减少,溶质是始终不变的,据此便可解 题。2、溶质的增加引起浓度变化。面对这种问题,溶质和 浓度都增大了,但溶剂是不变的,据此便可解题。3、两种或几种不同溶度的溶液配比问题。面对这种问 题,要抓住混合前各溶液的溶质和与混合接溶液的溶质 质量相等,据此便可解题。溶质、溶剂、溶液和浓度具有如下基本关系式:溶液的质量二溶质的质量+溶剂的质量浓度二溶质质量溶液质量溶液质量二溶质质量浓度溶质质量二溶液质量浓度下面是联创世华专家组为各位考生精解的两道例题,请10大家认真学习:【例题1】甲容器中有浓度为4%的盐水250克,乙容器 中有某种浓度的盐水若干克。现从乙中取出75
14、0克盐水,放入甲容器中混合成浓度为8%的盐水。问乙容器中的盐 水浓度约是多少?()A.9.78%B.10.14%C.9.33%D.11.27%【答案及解析】C。这是一道传统的不同浓度溶液混合 产生新浓度溶液的问题。解此类题传统的方法就是根据 混合前后的各溶液的溶质、溶剂的变化,然后按照解浓 度问题公式求解就可。解:甲容器中盐水溶液中含盐量=250X4%=10克;混合后的盐水溶液的总重量=250+750=1000克;混合后的盐水溶液中含盐量=1000X8%=80克;乙容器中盐水溶液中含盐量=80-10二70克;乙容器中盐水溶液的浓度=(70/750)义100%Q9.33%O选 择C。【例题2浓度
15、为70%的酒精溶液100克与浓度为20%的酒精溶液400克混合后得到的酒精溶液的浓度是多 少?()A.30%B.32%C.40%D.45%【答案及解析】Ao解法一:这道题我们依旧可以按照 传统的公式法来解:100克70%的酒精溶液中含酒精100X70%=70克;11400克20%的酒精溶液中含酒精400X20%=80克;混合后的酒精溶液中含酒精的量=70+80=150克;混合后的酒精溶液的总重量=100+400=500克;混合后的 酒精溶液的浓度=150/500 X100%=30%,选择A。然而在行测考试中我们必须保证做题效率。下面我们来 看一下这道题的比较简单的算法。解法二:十字相乘法:混合
16、后酒精溶液的浓度为X%,运 用十字交叉法:溶液 I 70 X-20 100/X/溶液 n 20 70-X 400因此x=30此时,我们可以采用带入法,把答案选项带 入,结果就会一目了然。选A。联创世华专家点评:在解决浓度问题时,十字交叉法的 应用可以帮助考生,准确迅速的求出问题的答案。因此 我们必须掌握这种方法。十字相乘法在溶液问题中的应用一种溶液浓度取值为 A,另一种溶液浓度取值为B。混合后浓度为C。(C-B):(A-C)就是求取值为A的溶液质量与浓度为B的溶液质 量的比例。计算过程可以抽象为:A.C-B12.cB.A-C这就是所谓的十字相乘法。【例题3在浓度为40%的酒精中加入4千克水,浓
17、度 变为30%,再加入M千克纯酒精,浓度变为50%,则M 为多少千克?D(2009江西)A.8 B.12 C.4.6 D.6.4【解答】Do解法一:方程法。设原有溶液x千克,解得M=6.4 千克。解法二:十字相乘法。第一次混合,相当于浓度为40%与0的溶液混合。40 30300 10所以40%的酒精与水的比例为30:10=3:lo水4千克,40%的酒精12千克,混合后共16千克。第二次混合,相当于浓度为30%与100%的溶液混合。30 5050100 20所以30%的酒精与纯酒精的比例为50:20=5:2,即16:M=5:2,M=64 千克13浓度问题是数学运算中一种比较常见的题型,希望大家
18、解此次类题时能掌握其中的要点,做到灵活运用。无论 是传统的公式法还是是灵活的十字交叉法,我们都要掌 握,从而在做题中快速分析出最合适你的解题方法。做 到既快又准下面是专家组为大家精选十道有关浓度问题 的练习题。希望大家认真做题,掌握方法。1、现有浓度为20%的糖水300克,要把它变为浓度为 40%的糖水,需要加糖多少克?()A.80g B.90g C.100g D.120g2、在浓度为40%的酒精溶液中加入5千克水,浓度变 为30%,再加入多少千克酒精,浓度变为50%?()A.6kg B7kg C.8kg D.9kg3、甲乙两只装有糖水的桶,甲桶有糖水60千克,含糖 率为4%,乙桶有糖水40千
19、克,含糖率为20%,两桶互 相交换多少千克才能使两桶水的含糖率相等.()A.21kg B.22kg C.23kg D.24kg4、取甲种硫酸300克和乙种硫酸250克,再加水200 克,可混合成浓度为50%的硫酸;而取甲种硫酸200克和 乙种硫酸150克,再加上纯硫酸200克,可混合成浓度 为80%的硫酸。那么,甲、乙两种硫酸的浓度各是多少?()A.75%,60%B.68%,63%C.71%,73%D.59%,65%5、两个要同的瓶子装满酒精溶液,一个瓶子中酒精与 14水的体积比是3:1,另一个瓶子中酒精与水的体积比是 4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的 体积之比是多少?()A
20、.31:9 B.7:2 C.31:40 D.20:116、现有一种预防禽流感药物配置成的甲、乙两种不同 浓度的消毒溶液。若从甲中取2100克,乙中取700克 混合而成的消毒溶液的浓度为3%,若从甲中取900克,乙中取2700克,则混合而成的消毒溶液的浓度为5%,则甲、乙两种消毒溶液的浓度分别为0A.3%,6%B.3%,4%C.2%,6%D.4%,6%7、一容器内有浓度为25%的糖水,若再加入20千克水,则糖水的浓度变为15%,问这个容器内原来含有糖多少 千克?()A.7kg B.7.5kg C.8kg D.8.5kg8、甲、乙两只装满硫酸溶液的容器,甲容器中装有浓 度为8%的硫酸溶液600千克
21、,乙容器中装有浓度为40%的硫酸溶液400千克.各取多少千克分别放入对方容器 中,才能使这两个容器中的硫酸溶液的浓度一样?()A.240kg B.250kg C.260kg D.270kg9、现有浓度为10%的盐水20千克,再加入多少千克浓 度为30%的盐水,可以得到浓度为22%的盐水?()A.26g B.28 C.30kg D.31kg10、有若干千克4%的盐水,蒸发了一些水分后变成了 10%15的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少克?A.480g B.490g C.500g D.520g答案:CCDAA CBACC余数问题解题思路以真题为例数学运算中
22、余数问题侧重考查考生的逐步分析能力。在 解答余数问题时需要考生充分利用相关知识点排除不可 能的情形,这需要考生具备比较高的分析能力。【例11 一个两位数除以一个一位数,商仍是两位数,余数是8。问被除数,除数,商,余数之和是多少()A.98 B.107 C.114 D.125【解答】余数是8,而除数应该大于余数,结合除数是 一位数,知除数为9商是两位数,结合被除数也是两位数,则可知商只能是 10(否则若商不小于11,则被除数大于9*11+8=107)由此出发知被除数为9*10+8=98于是四个数的和为98+9+10+8=125【点评】余数问题侧重考查考生的逐步分析能力。在解 答余数问题时需要考生
23、充分利用相关知识点排除不可能 的情形,这需要考生具备比较高的分析能力。这是一种 比较高的能力要求,是考试中能力考查的要求之一,见 16下例。【例1】用六位数字表示日期,如980716表示1998年 7月16日,如用这种方法表示2009年的日期,则全年 中六个数字都不相同的日期有多少个?()A.12 B.29 C.O D.1【解答】假设2009年AB月CD日,满足要求,它可以简写成“09ABCD”由于月份当中不能有0,所以不能是01-10月,而11月 有两个1,也应该排除于是:AB=12此时:原时刻可以简写成“0912CD”由于已经出现了 0、1、2,所以肯定不是01-30号,而 31号里又有1
24、 了,排除综上:无解。故满足题目要求的日期为0个。一.a与b的和除以c的余数,等于a,b分别除以c的 余数之和(或这个和除以c的余数)。例如,23,16除 以5的余数分别是3和1,所以(23+16)除以5的余数 等于3+1=4o注意:当余数之和大于除数时,所求余数 等于余数之和再除以c的余数。例如,23,19除以5的 余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。1.号码分别是101,126,173,193的4个运动员进行 17乒乓球比赛,规定每两人比赛的盘数是他们号码的和被 3除所得的余数。那么打球最多的运动员打了多少盘?解:101除3余2,126除3余0,17
25、3除3余2,193除 3余1101:2+0,2+2,2+1 分别除 3 余数是 2+1+03(盘)126:0+2,0+2,0+1,分别除 3 余数是 2+2+1=5(盘)173:2+2,2+0,2+1,分别除 3 余数是)+2+0=3(盘)193:1+2,1+0,1+2,分别除 3 余数是 0+1+0=1(盘)2.有一个整数,用它去除70,110,160得到的三个余 数之和是50。求这个数。分析与解:先由题目条件,求出这个数的大致范围。因为504-3=162,所以三个余数中至少有一个大于 16,推知除数大于16。由三个余数之和是50知,除数 不应大于70,所以除数在1770之间。由题意知(7+
26、110+160)-50=290应能被这个数整除。将290分解质因数,得到290=2X5X29,290在1770 之间的约数有29和58。因为1104-58=1.5250,所以58不合题意。所求整数是29 o二.a与b的乘积除以c的余数,等于a,b分别除以c 的余数之积(或这个积除以c的余数)。例如,23,16 除以5的余数分别是3和1,所以(23X16)除以5的 余数等于3X1=3。注意:当余数之积大于除数时,所求 18余数等于余数之积再除以C的余数。例如,23,19除以 5的余数分别是3和4,所以(23X19)除以5的余数 等于(3X4)除以5的余数。(感觉这个在求尾数之类 的问题当中用的比
27、较多.)1.算式 7+7X7+.+7X7X.X7(1990 个 7)计算结果的末两位数字是多少?解:1个7是7,2个7相乘末两位是49,3个7相乘 末两位是43,4个7相乘末两位是01,5、6、7、8个7 相乘两位又是07,49,43,O lo把4个加数分成1组,末两位的和是7+49+43+1=100,末两位位是0。1990/4余2,所以和的末两位是7+49=56。2.甲、乙两个代表团乘车去参观,每辆车可乘36人。两代表团坐满若干辆车后,甲代表团余下的11人与乙 代表团余下的成员正好又坐满一辆车。参观完,甲代表 团的每个成员与乙代表团的每个成员两两合拍一张照片 留念。如果每个胶卷可拍36张照片
28、,那么拍完最后一 张照片后,相机里的胶卷还可拍几张照片?分析与解:甲代表团坐满若干辆车后余11人,说明甲 代表团的人数(简称甲数)除以36余11;两代表团余 下的人正好坐满一辆车,说明乙代表团余36-11=25(人),即乙代表团的人数(简称乙数)除以36余25;甲代表团的每个成员与乙代表团的每个成员两两合拍一 张照片,共要拍“甲数X乙数”张照片,因为每个胶卷 19拍36张,所以最后一个胶卷拍的张数,等于“甲数义 乙数”除以36的余数。因为甲数除以36余11,乙数除以36余25,所以“甲 数X乙数”除以36的余数等于11X25除以36的余数。(11X25)4-36=7.23,即最后一个胶卷拍了
29、23张,还可拍36-23=13(张)。星期、日期问题星期、日期问题在国家公务员考试中考查的并不是 很多,仅在2005年国家公务员考试时有所考查。在星 期、日期问题中,主要考查两种题型,其他新型题型都 是在这两种题型基础上演变而来的。详见下文:题型一:已知某年月日为星期几,求另一年月日为 星期几。解题方案:如果日期的某月某日是相同的,则只需 要考虑中间所间隔的年份即可。此时通用的解决口诀是“一年就是1,闰日再加1”,也就是过1年当做1天计 算即可,在中间时间段中如果出现一个闰日,就再加上 1天,然后求解是星期几就可以了。如果某月某日是不同的,则先求相同的某年月日是 星期几,然后再在该年中的不同日
30、期之间进行转化。举 个例子,知道2008年8月8日是星期五,往求2010年 10月10日是星期几。则只需先求出2010年8月8日是 星期日,再推出2010年10月10日的星期即可。20题型二:给出今天的之前(或之后)某些天是星期 几,然后往求另外的某天是星期几。解题方案:这类题型与上类题型的不同之处,在于 不再涉及年月日,单纯的考查不同日期之间的间隔天数,这个间隔天数是通过之前之后*天来进行表述的。解决 的方法是画出中间走动的曲线,然后从已知星期几的那 天开始,依次加减天数至目标日即可,加减的原则是“左 减右加”,也即向过去移动时用减法,向将来移动时用加 法。对于星期日期问题,要增加难度,往往
31、是利用一些 默认的常识,让考生自己判断初始日期。例如:已知某年二月份有5个星期五这个条件,就是利用2月份平年为28天,不论星 期几都只有4个,因此该月必然是闰年的2月,也即29 天,并且2月29日是星期五。这样就确定初始日期了。在星期日期问题中,凡是要求星期几,其核心就在 于“过7天与不过是一样的“,所以直接划掉天数中7 的倍数即可。余数相关问题在国家公务员考试中,余数相关问题主要考查两类 问题:一类是基本余数问题,一类是同余问题。这两类问题的区别之处在于有无“商”的出现,也 即如果题目涉及到商,则属于基本余数问题,如果不涉 21及到商,则是同余问题。基本余数问题的考查点集中在基本恒等式:被除
32、数=除数*商+余数基本余数问题的常规解答方式是根据题目条件及基 本恒等式列出方程组并求解即可。而在基本余数问题中的常用技巧是被除数大于商与 余数的乘积,并且将恒等式右侧的余数移到左侧时,可 得到整除结论:被除数减去余数能够被商或除数整除。同余问题的题目通常表述为类似于“一个数除以9余1,除以8余1,除以7余1”这 种形式。这种问题通常的求解是先根据题目条件写出被除数 的表达式,然后根据题目的限定条件进行具体求解。写出表达形式的方法通常是根据口诀“余同取余,和同加和,差同减差,公倍数做周期”对于一般的情形,考试中一般不会涉及,考生并不 需要记住中国剩余定理。如果同余问题中,待求量为某个符合要求的
33、被除数,则通常只需代入验证即可。路程问题这类问题分为相遇问题、追及问题、流水问题 相遇问题要把握的核心是“速度和”的问题,即A、B 两者所走的路程和等于速度和*相遇时间;追及问题要 22把握的核心是“速度差”的问题,即A走的路程减去B 走的路程等于速度差*追及时间;流水问题,为节省空 间只需记住以下结论:船速二(顺水速度+逆水速度)除 以2,水速二(顺水速度一逆水速度)除以2.当然题目 不会单纯明显的考你相遇、追及、流水问题,存在许多 变形。姐弟俩出游,弟弟先走一步,每分钟走40米,走了 80 米后姐姐去追他。姐姐每分钟走60米,姐姐带的小狗 每分钟跑150米。小狗追上了弟弟又转去找姐姐,碰上
34、 了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小 狗才停下来。问小狗共跑了多少米?A.600 米 B.800 米C.1 200 米 D.1 600 米答案:A设x分钟后相遇,则40 x+80=60 x。则x=4。因小狗的速度为150米/分钟,故小狗的行程为150X 4=600,故A正确路程问题主要公式是s=v*t和t=s/v路程问题(追及问题)例1.东西两镇相距240米,一辆客车上午8时从东镇 开往西镇,一辆货车上午9时从西镇开往东镇,到中午 12点,两车恰好在两镇间的中点相遇。如果两车都从上23午8时由两地相向开出,速度不变,到上午10时,两 车还相距多少米?()A.80 B.110 C.
35、90 D.100 求s需要v和ts-(vl+v2)*2例2.某学校操场的一条环形跑道长400米,甲练习长 跑,平均每分钟跑250米:乙练习自行车,平均每分钟 跑550米,那么两人同时同地同向而行,经过x分钟第 一次相遇,若两人同时同地反向而行,经过y分钟第一 次相遇,则下列说法正确的是()A.x-y=l B.y-x=5/6 C.y-x=l D.x-y=5/6x=400/(vl-v2)y=400/(vl_v2)例3.甲、乙、丙三人沿着400米环形跑道进行800米跑 比赛,当甲跑1圈时,乙比甲多跑1/7圈,丙比甲少跑 1/7圈。如果他们各自跑步的速度始终不变,那么,当 乙到达终点时,甲在丙前面()
36、A.85 米 B.90 米 C.100 米 D.105 米看成时间为1/7分;Vl=282=28+4=32;24V3=28-4=24;T=8/32=l/4;S=(vl-v2)/4=1;例4.一艘每小时航行25公里的客轮,在水速每小时3 公里的水面上顺水行驶,行完140公里需几个小时?A.8 B.7 C.6 D.5140/28=5例5.两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车上的旅 客发现第一列车在旁边开过时共用了 6秒,则第一列车 的长度为多少米?()A.60 米 B.75 米 C.80 米 D.135 米(10+12.5)6例6商场的自动扶梯以
37、匀速由下往上行驶,两个孩子嫌 扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上 走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩 用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止 时,可看到的扶梯梯级有().4:5A.80 级 B.100 级 C.120 级 D.140 级 路程问题分为相遇问题、追及问题和流水问题。流水问 题我们会在以后单独解析。这里我们先一起来探讨和学 习相遇和行程问题。相遇问题要把握的核心是“速度和”的问题,即A、25B两者所走的路程和等于速度和X相遇时间。追及问题要把握的核心是“速度差”的问题,即A 走的路程减去B走的路程等于速度差X追及时间。应用公式:速度和X相遇时
38、间=相遇(相离)路程 速度差X追及时间二路程差下面是专家组为各位考生精解的四道例题,请大家 认真学习:【例1】甲、乙二人同时从相距60千米的两地同时 相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速 度比乙的速度快,乙原来的速度为()A.3千米/时B.4千米/时 C.5千米/时 D.6千 米/时【答案】Bo【解析】这是一道典型的相遇问题。方法一:原来 两人速度和为606=10千米/时,现在两人相遇时间为 60+(10+2)=5小时,采用方程法:设原来乙的速度为 X千米/时,因乙的速度较慢,则5(X+l)=6X+1,解得 X=4O注意:在解决这种
39、问题的时候一定要先判断谁的 速度快,头脑反应要灵活,时刻谨记速度和和速度差的 问题。方法2:提速后5小时比原来的5小时多走了 5千 米,比原来的6小时多走了 1千米,可知原来1小时刚 26好走了 5T=4千米。例2 一条长400米的环形跑道,欣欣在练习骑 自行车,他每分钟行560米,彬彬在练长跑,他每分钟 跑240米,两人同时从同地同向出发,经过多少分钟两 人可以相遇?A.lmin B.1.25min C.1.5min D.2min【答案】Bo【解析】这是一道环形追及问题,追上时跑得快的 人恰好比跑得慢的多跑一圈(即多跑400米),根据追 及问题基本关系式就可求出时间了即4004-(560-2
40、40)=4004-320=1.25(分)专家点评:相遇问题和追击问题又分为直线和封闭 线路两类。直线上的相遇与追及问题比较简单,而封闭 环形的相遇与追及问题是近几年考察较多的题型。解决 这类问题关键是要掌握从同时出发到下次追及的路程恰 是一周长度,并弄清速度、时间、路程之间的关系。【例3】甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追 上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两 人相距多少米?A.15 B.20 C.25 D.30【答案】Co【解析】甲乙的速度差为124-6=2m/s,则乙的速度27为2X5+2=5m/s,如果乙先跑9秒,甲再追乙,
41、那么 10秒后,两人相距5X9-2X10=25m。例4 一条电车线路的起点站和终点站分别是甲 站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑 车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了 10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了()分钟。A.41 B.40 C.42 D.43【答案】Bo【解析】骑车人一共看到12辆车,他出发时看到 的是15分钟前发的车,此时第4辆车正从甲发出。骑 车中,甲站发出第4到第12辆车,共9辆,有8个5 分钟的间隔,时间是5X8=40(分钟)。专家点评:
42、例三和例四中的行程问题比较复杂,难 解。行程问题是数学运算里较难的一种题型。这类题型 千变万化,比较复杂,计算也比较困难。因此考生在遇 到这类题型时一定要学会灵活变通,如果这道题是比较 传统易解得,我们要把握住。如果是很复杂,无从入手,那么就要学会放弃。谨记不能在这类题上浪费过多宝贵 的时间。行程问题这类题型着实复杂且变化较多。专家建议 28考生们在做题时要分析此类题的难易程度,学会放弃。当然我们也不能在没做题之前就选择放弃。如果这类题 是传统的不复杂的,常见的,我们就要把握住。下面是专家组为大家精选5道有关行程问题的练习 题。希望大家认真做题,掌握方法。1、一艘轮船从河的上游甲港顺流到达下游
43、的丙港,然后调头逆流向上到达中游的乙港,共用了 12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度 是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为()A.44千米B.48千米C.30千米D.36千米2、甲、乙两人联系跑步,若让乙先跑12米,则甲 经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距 多少米?A.15 B.20 C.25 D.303、甲、乙两地相距6千米,某人从甲地步行去乙 地,前一半时间平均每分钟行80米,后一半时间平均 每分钟行70米。问他走后一半路程用了()分钟。A.43 B.48.5 C.42.5 D
44、.444、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相 遇。已知甲车速度是60千米/时,乙车速度是40千米/29时,那么,甲车提前了多少分出发()分钟。A.30 B.40 C.50 D.605、某校下午2点整派车去某厂接劳模作报告,往 返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30 分到达。问汽车的速度是劳模步行速度的()倍。A.5 B.6 C.7 D.8答案:1-5 ACCCA答案和解析:1、【答案及解析】A。顺流速度-逆流速度=2X水流 速度,又顺流速度二2 X逆流速度,可知顺流速度二4义水
45、流速度=8千米/时,逆流速度=2*水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X+8+(X-18)4-4=12 解得 X=44。2、【答案及解析】Co甲乙的速度差为12/6=2米/秒,则乙的速度为2义5/2=5米/秒,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5X9-2X10=25米。3、【答案及解析】Co全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分 钟,走前一半路程速度一定是80米,时间是 3000/80=37.5分钟,后一半路程时间是80-37.5=42.5 分钟4、【答案及解析】C。法1、方程法:设两车一起30走完A、B两地
46、所用时间为x,甲提前了 y时,则有,(60+40)x=60y+(x-30)+40(x-30),y=50方法2、甲提前走的路程=甲、乙共同走30分钟的 路程,那么提前走的时间为,30(60+40)/60=505、【答案及解析】A。方法1、方程法,车往返需 1小时,实际只用了 30分钟,说明车刚好在半路接到劳 模,故有,车15分钟所走路程二劳模75分钟所走路程(2点15-1点)。设劳模步行速度为a,汽车速度是劳模 的x倍,则可列方程,75a=15ax,解得x=5。方法2、由于,车15分钟所走路程=劳模75分钟 所走路程,根据路程一定时,速度和时间成反比。所以车 速:劳模速度=75:15=5:1尽管
47、植树问题在近几年的国考中出现不是很多,但这类 数学运算解题方法系列之植树问题通过近几年的国考来 看,植树问题并不像路程问题和浓度问题那样年年都会 考查。国考行测题中出现植树问题,也是以植树原型题 出现,很少会做延伸涉及到锯木头,敲钟等问题。尽管植树问题在近几年的国考中出现不是很多,但这类 问题在省考中经常会被问津。并且植树问题在近几年的 省市考试中得到了延伸,考题中开始出现路灯,跨栏,锯木头,爬楼梯,敲钟等各类类似问题。因此这类经典 问题应得到重视。下面让我们从以下三种情况来解析植树问题:31一.不封闭路线植树问题1、路线两端都植树把最后总植树量看作一个系统。开始路线一端有一棵树,设统初始值为
48、1,则以后每隔一段就会植一棵树,即总 数。总数二段数+1应用公式:棵树二线路总长+株距+1,线路总长二株距义(棵树-1),株距二线路总长+(棵树-1)。2、路线一端植树设系统初始值为0。则总棵树二总段数。应用公式:棵树二线路全长株距,线路全长二株距义棵 树,株距二线路总长棵树。3、路线两端均不植树设系统初始值为0,因最后一端不植树,故总棵树二总段数-1。应用公式:棵树二线路总长+株距-1,线路总长二株距X(棵树+D,株距=线路总长+(棵树+1)。二、封闭型植树问题应用公式:棵树二线路总长+株距=总段数,线路总长二 株距X棵树,株距=线路总长棵树。三、比较延伸,生活中的“植树问题”我们来看几道例
49、题,帮助大家熟悉植树问题的解题方法:【例题1】在圆形的花坛周围植树,已知周长为50米,如果每隔5米种一棵树的话,一共可以种多少棵?()32A.9 B.10 C.11 D.12【答案】Bo【解析】这是一道典型的封闭性植树问题,首尾重合。棵树就等于总段数=线路总长/株距,因此选Bo做封闭 性植树问题时,无论是圆形,三角形还是方形封闭,都 是一样的解法,不要被图形迷惑。【例题2】在某淡水湖四周筑成周长为8040米的大堤,堤上每隔8米栽柳树一棵,然后在相邻两棵树之间每隔 2米栽桃树一棵,应准备桃树多少棵?()A.1005 B.3015 C.1010 D.3020【答案】B o【解析】这道植树题就把我们
50、所说的线路两端不植树和 封闭性植树问题结合在一起来考查考生。其实这道题你 只要拆解开来分析一就很容易做出来。即栽柳树 8040/8=1005(棵),也就是大堤被柳树分成1005段。又在两相邻柳树之间的堤,被分为2米一段,共分为:8/2=4(段在两柳树之间栽桃树,由于两端不需要再 栽桃树了,所以,桃树的棵树比段数少1,也就是相邻 两棵柳树之间栽桃树4-1=3(棵)。因而,在整个大堤上 共准备栽桃树为:3X1005=3015(棵)。【例题3】广场上的大钟6时敲6下,15秒敲完,12时敲 响12下,需要用多长时间?A.30 秒 B.33 秒 C.36 秒 D.39 秒33【答案】Ao【解析】这是有植