1、人教七年级下册数学期末考试题附解析一、选择题125的平方根是()A5B5CD52如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )ABCD3若点在轴上,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列四个命题其中正确的个数是( )对顶角相等;在同一平面内,若,与相交,则与也相交;邻补角的平分线互相垂直;在同一平面内,垂直于同一条直线的两条直线互相垂直A1个B2个C3个D4个5如图,如果ABEF,EFCD,下列各式正确的是( )A1+23=90B12+3=90C1+2+3=90D2+31=1806下列说法不正确的是()A的平方根是B9是81
2、的平方根C0.4的算术平方根是0.2D37如图,将一张长方形纸片沿折叠使顶点,分别落在点,处,交于点,若,则( )ABCD8如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90移动2个单位长度到达点P2;然后逆时针转向90,移动3个单位长度到达点P3;然后逆时针转向90,移动4个单位长度到达点P4;,如此继续转向移动下去设点Pn(xn,yn),n1,2,3,则x1+x2+x3+x2021()A1B1010C1011D2021九、填空题9已知实数x,y满足+(y+1)2=0,则x-y的立方根是_十、填空题10小明从镜子里看到对面电子钟的像如图所示
3、,那么实际时间是_.十一、填空题11已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线则的度数为_十二、填空题12如图,已知ABCD,BCDE若A20,C105,则AED的度数是_十三、填空题13如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若CBE45,BD6cm,则ADB1的面积为_十四、填空题14已知的小数部分是,的小数部分是,则_十五、填空题15在平面直角坐标系中,有点A(a2,a),过点A作ABx轴,交x轴于点B,且AB2,则点A的坐标是_十六、填空题16在平面直角坐标系中,对于点P(x,
4、y),我们把点P(y1,x1)叫做点P的幸运点已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,这样依次得到点A1,A2,A3,An若点A1的坐标为(3,1),则点A2020的坐标为_十七、解答题17(1)计算: (2)比较 与-3的大小十八、解答题18求下列各式中的x值(1)x26(2)(2x1)3=4十九、解答题19补全下面的证明过程和理由:如图,AB和CD相交于点O,EFAB,CCOA,DBOD求证:AF证明:CCOA,DBOD,( )又COABOD,( )C ( )ACDF( )A ( )EFAB,F ( )AF( )二十、解答题20如图,在平面直角坐标系中,ABC
5、的顶点都在网格点上,每个小正方形边长为1个单位长度(1)将ABC向右平移6个单位,再向下平移3个单位得到A1B1C1,画出图形,并写出各顶点坐标;(2)求ABC的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的因为的整数部分是,将这个数减去其整数部分,差就是小数部分根据以上内容,请解答:已知,其中是整数,求的值二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁
6、出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由二十四、解答题24如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且(1)求的度数(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律(3)当点
7、P运动到使时,求的度数二十五、解答题25如图,平分,B=450,C=730 (1) 求的度数;(2) 如图,若把“”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;(3) 如图,若把“”变成“平分”,其它条件不变,的大小是否变化,并请说明理由【参考答案】一、选择题1A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:(5)22525的平方根5故选A【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2C【分析】根据平移变换的定义可得结论【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的故选:C【点睛】本题考查利用平移设计
8、图案,解题的关键是理解平移变换解析:C【分析】根据平移变换的定义可得结论【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的故选:C【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题3D【分析】根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限【详解】在轴上,在第四象限,故选D【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解4D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答【详解】对顶角相等,正确;在同一平面内,若,与相交,则与也相交,正确;邻补角之和为180,所
9、以它们平分线的夹角为,即邻补角的平分线互相垂直,正确;在同一平面内,垂直于同一条直线的两条直线互相垂直,正确故选:D【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键5D【分析】根据平行线的性质,即可得到3=COE,2+BOE=180,进而得出2+3-1=180【详解】EFCD3=COE31=COE1=BOEABEF2+BOE=180,即2+31=180故选:D【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补6C【分析】根据立方根与平方根的定义即可求出答案【详解】解:0.4的算术平方根为 ,故C错误,故选C【点
10、睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型7B【分析】根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解【详解】解:在矩形纸片中,折叠,故选:B【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要8A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、解析:A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为
11、,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、的值分别为:1,1,3,3,;,故选:A【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律九、填空题9【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是非负数的性
12、质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空题1021:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05故答案为21:05【点睛】本题考查镜面反射的原理与性质解决此类题应认真观察,注意技巧十一、填空题1150【分
13、析】分射线OC在AOB的内部和射线OC在AOB的外部,分别画出图形,结合根据角平分线定义求解【详解】解:若射线OC在AOB的内部,OE,OF分别是AOC和COB的解析:50【分析】分射线OC在AOB的内部和射线OC在AOB的外部,分别画出图形,结合根据角平分线定义求解【详解】解:若射线OC在AOB的内部,OE,OF分别是AOC和COB的角平分线,EOC=AOC,FOC=BOC,EOF=EOC+FOC=AOC+BOC=50;若射线OC在AOB的外部,射线OE,OF只有1个在AOB外面,如图,EOF=FOC-COE=BOC-AOC=(BOC-AOC)=AOB=50;射线OE,OF都在AOB外面,如
14、图,EOF=EOC+COF=AOC+BOC=(AOC+BOC)=(360-AOB)=130;综上:EOF的度数为50或130,故答案为:50或130【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键注意分类思想的运用十二、填空题1295【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出B,再根据两直线平行,同位角相等求出AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解解析:95【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出B,再根据两直线平行,同位角相等
15、求出AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:如图,延长DE交AB于F,ABCD,B180C18010575,BCDE,AFEB75,在AEF中,AEDA+AFE20+7595,故答案为:95【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键十三、填空题13cm【分析】根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解【详解】解:根据翻折变换的性质可知AC垂直平分BB1,B1DAC,解析:cm【分析】根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC
16、为三角形ADB中位线,从而求解【详解】解:根据翻折变换的性质可知AC垂直平分BB1,B1DAC,AC为三角形ADB中位线,BC=CD=BD=3cm,在RtBCE中,CBE=45,BC=3cm,CE2+BE2=BC2,解得BE=CE=cmEB1=BE=,CE为BDB1中位线,DB1=2CE=3cm,ADB1的高与EB1相等,SADB1=DB1EB1=3=cm,故答案为:cm【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为ADB的中位线从而得出答案十四、填空题141【分析】根据479可得,23,从而有75+8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数
17、部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果【详解】解析:1【分析】根据479可得,23,从而有75+8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果【详解】解:479,23,-3-2,75+8,25-3,5+的整数部分是7,5-的整数部分为2, a=5+-7=-2,b=5-2=3-,12019=1故答案为:1【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键十五、填空题15(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而
18、可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),A解析:(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),ABx轴,AB2,|a|2,a2,当a2时,a20;当a2时,a24点A的坐标是(0,2)、(4,2)故答案为:(0,2)、(4,2)【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键十六、填空题16(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3
19、,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根解析:(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根据此规律即可解决问题【详解】解:观察,发现规律:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)2020=4504+4,点A2020的坐标为(0,-2)故答案为:(
20、0,-2)【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”十七、解答题17(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果【详解】解:(1)原式= = =1;(2)即解析:(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果【详解】解:(1)原式= = =1;(2)即故答案为(1)-1;(2)【点睛】本题考查实数的运算及实数的大小比
21、较,熟练掌握平方根和立方根的性质是解题的关键十八、解答题18(1);(2)【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:解析:(1);(2)【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:(2x1)3=8,开立方得:,2x=1,解得:【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个十九、解答题19见解析【分析】根据对顶角相等结合
22、已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),解析:见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),又COA=BOD(对顶角相等),C=D(等量代换)ACDF(内错角相等,两直线平行)A=ABD(两直线平行,内错角相等)EFAB,F=ABD(两直线平行,内错角相等)A=F(等量代换)故答案为:已知,对顶角相等;D,等量代换;内错角相等,两直线平行;ABD,两直线平行,内错角相等;ABD,两直线平
23、行,同位角相等,等量代换【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键二十、解答题20(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)ABC的面积为11【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位解析:(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)ABC的面积为11【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位置写出各点坐标即可;(2)根据图形的面积的和差求出ABC的面积即可【详解】解:如图所示,、;【点睛
24、】本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键二十一、解答题21同意;【分析】找出的整数部分与小数部分然后再来求【详解】解:同意小明的表示方法无理数的整数部分是,即,无理数的小数部分是,即,【点睛】本题主要考查了无理数的大小解题解析:同意;【分析】找出的整数部分与小数部分然后再来求【详解】解:同意小明的表示方法无理数的整数部分是,即,无理数的小数部分是,即,【点睛】本题主要考查了无理数的大小解题关键是确定无理数的整数部分即可解决问题二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根
25、的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)35;(2)55;(2)存在,或【分析】(1)依
26、据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ
27、,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3
28、x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键二十四、解答题24(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答
29、案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案【详解】(1)BC,BD分别评分和,又,;(2),又BD平分,;与之间的数量关系保持不变;(3),又,由(1)可得,【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解二十五、解答题25(1)DAE =14;(
30、2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE解析:(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE的度数(2)求出ADE的度数,利用DFE=90-ADE即可求出DAE的度数(3)利用AE平分BEC,AD平分BAC,求出DFE=15即是最好的证明【详解】(1)B=45,C=73,BAC=62,AD平分BAC,BAD=CAD=31,ADE=B+BAD=45+31=76,AEBC,AEB=90,DAE=90-ADE=14(2)同(1),可得,ADE=76,FEBC,FEB=90,DFE=90-ADE=14(3)的大小不变.=14理由: AD平分 BAC,AE平分BECBAC=2BAD,BEC=2AEB BAC+B+BEC+C =3602BAD+2AEB=360-B-C=242BAD+AEB=121 ADE=B+BADADE=45+BADDAE=180-AEB-ADE=180-AEB-45-BAD=135-(AEB+BAD)=135-121=14【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.