1、人教七年级下册数学期末考试题(及答案)一、选择题1下列说法正确的是()A4的平方根是B16的平方根是C2是的算术平方根D是36的算术平方根2下列对象中不属于平移的是( )A在平坦雪地上滑行的滑雪运动员B上上下下地迎送来客的电梯C一棵倒映在湖中的树D在笔直的铁轨上飞驰而过的火车3在平面直角坐标系中,点所在的位置是( )A轴B轴C第一象限D第四象限4下列命题中,假命题是( )A如果两条直线都与第三条直线平行,那么这两条直线也互相平行B在同一平面内,过一点有且只有一条直线与已知直线垂直C两条直线被第三条直线所截,同旁内角互补D两点的所有连线中,线段最短5如图,ABCD,ADAC,BAD35,则ACD
2、( )A35B45C55D706下列说法中正确的是( )1的平方根是1;5是25的算术平方根;(4)2的平方根是4;(4)3的立方根是4;0.01是0.1的一个平方根ABCD7两个直角三角板如图摆放,其中,与交于点M,若,则的大小为( )A95B105C115D1258如图,在平面直角坐标系上有个点P(1,0),点P第1次向上平移1个单位至点P1(1,1),紧接着第2次向左平移2个单位至点P2(1,1),第3次向上平移1个单位到达P3(1,2),第4次向右平移3个单位到达P4(2,2),第5次又向上平移1个单位,第6次向左平移4个单位,依此规律平移下去,点P2021的坐标为()A(506,10
3、11)B(506,506)C(506,1011)D(506,506)九、填空题9若,则=_十、填空题10若过点的直线与轴平行,则点关于轴的对称点的坐标是_十一、填空题11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_十二、填空题12如图,则的度数为_十三、填空题13将一张长方形纸条折成如图的形状,已知,则_十四、填空题14一列数a1,a2,a3,an,其中a11,a2,a3,an,则a2_;a1+a2+a3+a2020_;a1a2a3a2020_十五、填空题15如图,直线经过原点,点在轴上,于若A(4,0),B(m,3),C(n,-5),则_十六、填空题16如图,一个点
4、在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,那么第421秒时这个点所在位置的坐标是_十七、解答题17计算: (1) (2)十八、解答题18求下列各式中x的值(1)81x2 =16 (2)十九、解答题19已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系(1)如图1,已知与中,与相交于点问:与有何关系?请完成下面的推理过程理由:,结论:与关系是 (2)如图2,已知,则与有何关系?请直接写出你的结论(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两
5、边分别平行,那么 二十、解答题20已知:如图,ABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ABC的顶点都在格点上),点A,B,C的坐标分别为(1,0),(5,0),(1,5)(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ABC内部一点,平移ABC,点P随ABC一起平移,点A落在A(0,4),点P落在P(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积二十一、解答题21任意无理数都是由整数部分和小数部分构成的已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为例如:,即,显然的整数部分是2,小数部分是根据上面的材料,解决下列问题:(1)若的
6、整数部分是m,的整数部分是n,求的值(2)若的整数部分是,小数部分是y,求的值二十二、解答题22如图是一块正方形纸片(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm(2)若一圆的面积与这个正方形的面积都是2cm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“”或“”或“”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线
7、段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)二十四、解答题24如图1,E是、之间的一点(1)判定,与之间的数量关系,并证明你的结论;(2)如图2,若、的两条平分线交于点F直接写出与之间的数量关系;(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小二十五、解答题25在ABC
8、中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由【参考答案】一、选择题1B解析:B【分析】根据平方根和算术平方根的定义判断即可【详解】解:A4的平方根是2,故错误,不符合题意;B的平方根是4,故正确,符合题意;C-4没有算术平方根,故错误,不符合题意;D-6是36的一个平方根,故错误,不符合题意;故选B【点睛】本题考查了平方根和算术平方根的概念,解
9、题关键是熟悉相关概念,准确进行判断2C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移解析:C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;故选:C【点睛】本题考查了图形的平移,图形的平移只改变图形的位
10、置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称3A【分析】由于点的纵坐标为0,则可判断点在轴上【详解】解:点的纵坐标为0,故在轴上,故选:A【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点4C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案【详解】A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,选项A是真命题,故不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,选项B是真命题,故不符合题意;C.两条直线被第三条直线所截,同旁内角不一定互补,选项C是假命题,故符合题意;D.
11、 两点的所有连线中,线段最短,选项D是真命题,故不符合题意故选:C【点睛】本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理5C【分析】由平行线的性质可得ADCBAD35,再由垂线的定义可得ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出ACD的度数【详解】ABCD,BAD=35,ADCBAD35,ADAC,ADC+ACD90,ACD903555,故选:C【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键6B【分析】根
12、据平方根,算术平方根,立方根的概念进行分析,从而作出判断【详解】解:1的平方根是1,故说法错误;5是25的算术平方根,故说法正确;(-4)2的平方根是4,故说法错误;(-4)3的立方根是-4,故说法正确;0.1是0.01的一个平方根,故说法错误;综上,正确,故选:B【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键7B【分析】根据BCEF,E=45可以得到EDC=E=45,然后根据C=30,C+MDC+DMC=180,即可求解.【详解】解:BCEF,E=45EDC=E=45,C=30,C+MDC+DMC=180,DMC=180-C-MDC=105,故选B.【点
13、睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8A【分析】通过观察前面几次点的坐标,找到规律,即可求解【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(1,1),P3(1,2),P4(2,2),P5(解析:A【分析】通过观察前面几次点的坐标,找到规律,即可求解【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(1,1),P3(1,2),P4(2,2),P5(2,3),P6(2,3),P7(2,4),P8(3,4),P9(3,5),P4n(n+1,2n),P4n+1(n+1,2n+1),P
14、4n+2(n1,2n+1),P4n+3(n1,2n+2)(n为自然数)20215054+1,P2021(505+1,5052+1),即(506,1011)故选:A【点睛】此题主要考查了探索坐标系中点的规律,理解题意找到点的运动规律是解题的关键九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规
15、律的应用,能根据移动规律填空是解此题的关键十、填空题10【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标【详解】解:MN与x轴平行,两点纵坐标相同,a=-5,即M为(-3,-5)点M关于y轴的对解析:【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标【详解】解:MN与x轴平行,两点纵坐标相同,a=-5,即M为(-3,-5)点M关于y轴的对称点的坐标为:(3,-5)故答案为(3,-5) 【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键十一、填空题111+2-A=90【分析】先根据三角形的
16、外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间
17、的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和十二、填空题1230【分析】过点C作CFAB,根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到解析:30【分析】过点C作CFAB,根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到DCF=30,于是得到结论【详解】解:过点C作CFAB,ABDE,CFDE,BCF=ABC=70,DCF=180-CDE=40,BCD=BCF-DCF=70-40
18、=30故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题14, 1 【分析
19、】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值【详解】解:由题意可得,当a11时,a2,a3解析:, 1 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值【详解】解:由题意可得,当a11时,a2,a32,a41,202036731,a1+a2+a3+a2020(1+2)673+(1)673+(1),a1a2a3a2020(1)2673(1)(1)673(1)(1)(1)1,故答案为:,1【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键十五、填空题15【分析】作三角形的高线,根据坐标求出B
20、E、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A解析:【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A(4,0),AO=4,C(n,-5),OF=5,SAOB=AOBE=43=6,SAOC=AOOF=45=10,SAOB+SAOC=6+10=16,SABC=SAOB+SAOC,BCAD=16,BCAD=32,故答案为:32【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在
21、几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积十六、填空题16【分析】由题目中所给的点运动的特点找出规律,即可解答【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:【分析】由题目中所给的点运动的特点找出规律,即可解答【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9
22、+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,2020=400第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键十七、解答题17(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【
23、详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:解析:(1);(2)【分析】(1)方程变形后,利用平方根定义
24、开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法十九、解答题19(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据解析:(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据,即可得与的关系;(3)
25、由(1)(2)即可得出结论【详解】解:(1)理由:,(两直线平行,同旁内角互补), (两直线平行,同位角相等),结论:与关系是互补故答案为:;两直线平行,同旁内角互补;两直线平行,同位角相等;相等(2),理由如下:,(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理二十、解答题20(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,
26、再利用平行四边形的性质解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积【详解】解:(1)平面直角坐标系如图所示:(2)因为点A(1,0)落在A(0,4),同时点P(m,n)落在P(n,6),解得,点P的坐标为(1,2);如图,线段PC扫过的面积即为平行四边形PCCP的面积,线段PC扫过的面积为【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)0;(2)
27、【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是解析:(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是3,即m=3,的整数部分是2,即n=2,=0;(2),的整数部分是10,即2x=10,x=5,的小数部分是=,即y=,=【点睛】本题考查了二次根式的整数和小数部分看懂题例并熟练运用是解决本题的关键二十二、解答题22(1);(2);(3)不能;理由见解析【分析】(
28、1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB21,则AB1,由勾股定理,AC;故答案为:.(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4;即C圆C正;故答案为:(3)不能;由已知设长方形长和宽为3xcm和2xcm长方形面积
29、为:2x3x12解得x长方形长边为34他不能裁出【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在C
30、A的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED
31、=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型二十四、解答题24(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,解析:(1),见解析;(2);(3)60【分析】(1)作
32、EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,由(1)的结论得AFDBAFCDF,根据角平分线的定义得到BAFBAE,CDFCDE,则AFD(BAECDE),加上(1)的结论得到AFDAED;(3)由(1)的结论得AGDBAFCDG,利用折叠性质得CDG4CDF,再利用等量代换得到AGD2AEDBAE,加上90AGD1802AED,从而可计算出BAE的度数【详解】解:(1)理由如下:作,如图1,;(2)如图2,由(1)的结论得,、的两条平分线交于点F,;(3)由(1)的结论得,而射线沿翻折交于点G,【点睛】本题考查了平行线性质
33、:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等二十五、解答题25(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符
34、合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识