1、人教版八年级上册压轴题数学检测试题答案1如图,在等边ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O(1)填空:BOC 度;(2)如图,以CO为边作等边OCF,AF与BO相等吗?并说明理由;(3)如图,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由2如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足(1)直接写出_,_;(2)连接AB,P为内一点,如图1,过点作,且,连接并延长,交于求证:;如图2,在的延长线上取点,连接若,点P(2n,n),试求点的坐标3在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(
2、1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标4如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证
3、明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明)5在中,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接当点在线段上时,若点与点重合时,请说明线段;如图2,若点不与点重合,请说明;当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明)6如图,ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同连接CD、DE(1
4、)如图,当点D移动到线段AB的中点时,求证:DE=DC(2)如图,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由(3)如图,当点D移动到线段AB的延长线上,并且EDDC时,求DEC度数7在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a8b+200(1)求a,b的值;(2)点P在直线AB的右侧;且APB45,若点P在x轴上(图1),则点P的坐标为 ;若ABP为直角三角形,求P点的坐标8如图,等边中,点在上,延长到,使,连,过点作与点(1)如图1,若点是中点,求证:;(2)如图2,若点是边上任意一点,的结论是否仍成立?
5、请证明你的结论;(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论【参考答案】2(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结解析:(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结论(3)证明AFOOBR(SAS),推出OA=OR,可得结论【详解】解:(1)如图中,ABC是等边三角形,AB=BC,A=CB
6、D=60,在EAB和DBC中,EABDBC(SAS),ABE=BCD,BOD=BCD+CBE=ABE+CBE=CBA=60,BOC=180-60=120故答案为:120(2)相等理由:如图中,FCO,ACB都是等边三角形,CF=CO,CA=CB,FCO=ACB=60,FCA=OCB,在FCA和OCB中,FCAOCB(SAS),AF=BO(3)如图中,结论:AO=2OG理由:延长OG到R,使得GR=GO,连接CR,BR在CGO和BGR中,CGOBGR(SAS),CO=BR=OF,GCO=GBR,AF=BO,COBR,FCAOCB,AFC=BOC=120,CFO=COF=60,AFO=COF=60
7、,AFCO,AFBR,AFO=RBO,在AFO和OBR中,AFOOBR(SAS),OA=OR,OR=2OG,OA=2OG【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明解析:(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP
8、的延长线于点N,利用SAS证明OPBOCA,再证明BNP为等腰直角三角形,利用AAS证明ACDBND,即可证明AD=DB;作出如图所示的辅助线,证明BMP为等腰直角三角形,利用AAS证明PBFMPE,求得E(2n,n) ,M(3n3,n),证明点M,E关于y轴对称,得到3n3+2n=0,即可求解【详解】(1),解得:,故答案为:3,;(2)连接AC,COP=AOB=90,COP-AOP =AOB-AOP,在OPB和OCA中,OPBOCA(SAS),AC=BP,OCA=OPB=90,过点B作BNBP,交CP的延长线于点N,COP=90,OP=OC,OCP=OPC=ACP=45,OPB=90,BP
9、N=45,BNP为等腰直角三角形,BPN=N=45,BN=BP=AC,在ACD和BND中,ACDBND(AAS),AD=DB;AOB=90,AO=OB,AOB为等腰直角三角形,OBA=45,MBO=ABP,MBO+OBP=ABP+OBP=OBA=45,MBP=45,OPBP,BMP为等腰直角三角形,MP=BP,过点P作y轴的平行线EF,分别过M,B作MEEF于E,BFEF于F,EF交x轴于G,ME交y轴于H,连接OE,MPE+EMP=MPE +FPB=90,EMP=FPB,在PBF和MPE中,PBFMPE(AAS),BF=EP,PF=ME,P(2n,n),BF=EP=EH=2n,PG=EG=n
10、,PF=ME=3n,MH=ME-EH=3n2n=33n,E(2n,n) ,M(3n3,n),点P,E关于x轴对称,OE=OP,OEP=OPE,同理OM=OE,点M,E关于y轴对称,3n3+2n=0,解得,即点M的坐标为(,)【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题4(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1)
11、,;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得
12、NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=
13、PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解5(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC
14、至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SAS),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+DCB=
15、60+30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DEN中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,NDE=
16、BDC-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题6(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得解析:(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边
17、对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;过点A做AGEF交BC于点G,由DEF为等边三角形得到DADG,再推出AEGF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论【详解】(1)证明:,且E与A重合,是等边三角形在和中 如图2,过点A做AGEF交BC于点G,ADB60DEDFDEF为等边三角形AGEFDAGDEF60,AGDEFD60DAGAGDDADGDADEDGDF,即AEGF由易证
18、AGBADCBGCDBFBGGFCDAE(2)如图3,和(1)中相同,过点A做AGEF交BC于点G,由(1)可知,AE=GF,DC=BG,故【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键7(1)见详解;(2)DE=DC,理由见详解;(3)DEC=45【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证(2)猜测,寻找条件证明即可.最常用解析:(1)见详解;(2)DE=DC,理由见详解;(3)DEC=45【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证(2)猜测,寻
19、找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为EDDC,所以为等腰之间三角形,则DEC度数可求.【详解】由题意可知 D为AB的中点为等边三角形,(2)理由如下:在射线AB上截取,连接EF为等边三角形为等边三角形由题意知即在和中,(3)如图,在射线CB上截取,连接DF为等边三角形为等边三角形由题意知即在和中,EDDC为等腰直角三角形【点睛】本题主要
20、考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.8(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:解析:(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:如图2中,若ABP=90,过点P作PCOB,垂足为C如图3中,若BAP=90,过点P作PDOA,垂足为D分别利用全等三角形的性质解决问题即可【详解】(1)
21、a2+4a+4+b28b+160(a+2)2+(b4)20a2,b4(2)如图1中,APB45,POB90,OPOB4,P(4,0)故答案为(4,0)a2,b4OA2OB4又ABP为直角三角形,APB45只有两种情况,ABP90或BAP90如图2中,若ABP90,过点P作PCOB,垂足为CPCBBOA90,又APB45,BAPAPB45,BABP,又ABO+OBPOBP+BPC90,ABOBPC,ABOBPC(AAS),PCOB4,BCOA2,OCOBBC422,P(4,2)如图3中,若BAP90,过点P作PDOA,垂足为DPDAAOB90,又APB45,ABPAPB45,APAB,又BAD+
22、DAP90,DPA+DAP90,BADDPA,BAOAPP(AAS),PDOA2,ADOB4,ODAD0A422,P(2,2)综上述,P点坐标为(4,2),(2,2)【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题9(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论解析:(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论;(3)结论仍然成立,过点D作DM/BC交AC于M,证明,可得结论(1)证明:如图为等边三角形,又为中点, , ,;,为等腰三角形,(2)仍然成立,理由如下:如图,过点D作DM/BC交AC于M为等边三角形,为等边三角形,在和中, ,而,(3)的结论仍然成立,理由如下:如图为所求作图作交的延长线于,易证为等边三角形,而,在和中,【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题