收藏 分销(赏)

人教版八年级期末试卷专题练习(解析版).doc

上传人:精*** 文档编号:1926992 上传时间:2024-05-11 格式:DOC 页数:28 大小:912.54KB
下载 相关 举报
人教版八年级期末试卷专题练习(解析版).doc_第1页
第1页 / 共28页
人教版八年级期末试卷专题练习(解析版).doc_第2页
第2页 / 共28页
人教版八年级期末试卷专题练习(解析版).doc_第3页
第3页 / 共28页
人教版八年级期末试卷专题练习(解析版).doc_第4页
第4页 / 共28页
人教版八年级期末试卷专题练习(解析版).doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、人教版八年级期末试卷专题练习(解析版)一、选择题1要使二次根式有意义,那么a的取值范围是( )ABCD2下列满足条件的三角形中,不是直角三角形的是( )A三内角之比为123B三边长的平方之比为123C三边长之比为345D三内角之比为3453如图,下列条件中,能判定四边形是平行四边形的是( )A,B,C,D,4已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是()A平均数B中位数C众数D方差5已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是 ABCD6如图,在中,点在边上,若与关于直线对称,则线段的长为( )ABCD7ABCD的对角线AC

2、、BD相交于点O,AE平分BAD交BC于点E, 且ADC60,ABBC,连接OE有下列结论:CAD=30; SABCD = ABAC ; OB=AB; OE=AB其中成立的有( )A1个B2个C3个D4个8如图,菱形的边长为,且为的中点,是对角线上的一动点,则的最小值为( )ABCD二、填空题9二次根式中,x的取值范围为_10若菱形的两条对角线的长分别为6和10,则菱形的面积为_11直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为_cm12如图,长方形中,将此长方形折叠,使点B与点D重合,折痕为,则的面积是_13某函数的图象经过(1,),且函数y的值随自变量x的值增大而增大请你写出

3、一个符合上述条件的函数关系式:_14如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E若AD=6,则点E到AB的距离是_15如图,在平面直角坐标系中,直线:与轴交于点,如图所示依次作正方形、正方形、正方形,使得点、在直线上,点、在轴正半轴上,则点的坐标是_16如图,矩形纸片中,点、在矩形的边、上运动,将沿折叠,使点在边上,当折痕移动时,点在边上也随之移动则的取值范围为_三、解答题17计算:(1)+; (2)(3)(+2)18九章算术是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几

4、何?”翻译成数学问题是:如图所示,中,ACB90,AC+AB10,BC4,求AC的长19如图,每个小正方形的边长都是1A、B、C、D均在网格的格点上(1)求边BC、BD的长度(2)BCD是直角吗?请证明你的判断(3)找到格点E,画出四边形ABED,使其面积与四边形ABCD面积相等(一个即可,且E与C不重合)20如图,在矩形中,垂直平分对角线,交于,交于,交于,连接,(1)求证:四边形是菱形;(2)若为的中点,求的度数21(1)若实数m、n满足等式,求2m+3n的平方根;(2)已知,求的值22某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,问:(1

5、)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg?23在正方形中,点是边上任意一点,连接过点作于,交于. 如图1,过点作于.求证:;如图2,点为的中点,连接,试判断存在什么数量关系并说明理由;如图3,连接,点为的中点,在点从点运动到点的过程中,点随之运动,请直接写出点运动的路径长.24在平面直角坐标系中,直线l1:yx3m交x轴,y轴于A,E两点,m0,过点E的直线l2交x轴正半轴于点B(4m,0),如图1所示(1)求直线l2的函数解析式;(2)AEB按角的大小分类为 ;(3)以点A,B为基础,在x轴上方构建矩形ABCD,点E在边CD上,过原点的直线l3:ymx交直线CD于点P

6、交直线AE,BE于点G,H若直线l3把矩形ABCD的周长平分,求m的值;是否存在一个合适的m,使SBOHSAOG,若存在,求m的值;若不存在,则说明理由25已知,如图,在三角形中,于,且点从点出发,沿方向匀速运动,速度为;同时点由点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题:(1)线段_;(2)求证:;(3)当为何值时,以为顶点的四边形为平行四边形?26如图,两个全等的等边三角形ABC与ACD,拼成的四边形ABCD中,AC6,点E、F分别为AB、AD边上的动点,满足BEAF,连接EF交AC于点G,连接BD与CE、AC、CF分别交于点M、O、N,且ACB

7、D(1)求证:CEF是等边三角形(2)AEF的周长最小值是 (3)若BE3,求证:BMMNDN【参考答案】一、选择题1B解析:B【分析】根据二次根式有意义的条件:被开方数大于或等于0,可以求出a的范围【详解】解:根据题意得:,解得: 故选:B.【点睛】考查二次根式有意义的条件:被开方数大于或等于0.2D解析:D【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形【详解】A、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为30,60,90,故此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以是直角三角形;C、设三条边为,则有,符合勾股定理的逆定理,所以是直角三角

8、形;D、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为45,60,75,所以此三角形不是直角三角形;故选D【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可3B解析:B【解析】【分析】根据平行四边形的判定定理进行分析即可【详解】解:根据两组对边分别相等的四边形为平行四边形,则B选项正确,故选:B【点睛】本题考查平行四边形的判定,熟记基本的判定方法是解题关键4D解析:D【解析】【分析】由平均数,中位数,众数,方差的定义逐项判断即可【详解】A第一组数据平均数为,第二组数据平均数为,有改变,故

9、该选项不符合题意B由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意C由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意D由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意故选:D【点睛】本题考查平均数,中位数,众数,方差的定义掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键5D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定

10、理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可【详解】解:整理得,所以,解得;因为,所以,所以是直角三角形,设第三边c上的高的值是h,则的面积,所以故选:D【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为06A解析:A【解析】【分析】连接AE,利用对称的性质得到BD是线段AE的垂直平分线,DF是AEC的中位线,利用面积法求得AF的长,再根据勾股定理求得DF的长即可求解【详解】解:连接AE,ABC=90,BD=CD,DBC=DCB,DBC+ABD=90,DCB+BAC=90,ABD=BAC,BD=AD,则BD=A

11、D=CD,即D为AC中点,AB=2,BC=2AB,BC=4,AC=,ABD与EBD关于直线BD对称,AF=EF,BE=AB=2,AD=DE,BD是线段AE的垂直平分线,则AFBD,BD=AD=CD=DE, DF是AEC的中位线,EC=2DF, SABD=SABC,即,解得:AF=,DF=,EC=2DF=,故选:A【点睛】本题考查了轴对称的性质,三角形中位线定理,线段垂直平分线的判定和性质,勾股定理等,解题的关键是灵活运用所学知识解决问题7C解析:C【解析】【分析】由四边形ABCD是平行四边形,得到ABC=ADC=60,BAD=120,根据AE平分BAD,得到BAE=EAD=60推出ABE是等边

12、三角形,由于AB=BC,得到AE=BC,得到ABC是直角三角形,于是得到CAD=30,故正确;由于ACAB,得到SABCD=ABAC,故正确,根据AB=BC,OB=BD,且BDBC,得到ABOB,故错误;根据三角形的中位线定理得到OE=AB,故正确【详解】四边形ABCD是平行四边形,ABC=ADC=60,BAD=120,AE平分BAD,BAE=EAD=60ABE是等边三角形,AE=AB=BE,AB=BC,AE=BC,BAC=90,CAD=30,故正确;ACAB,SABCD=ABAC,故正确,AB=BC,OB=BD,BDBC,ABOB,故错误;CE=BE,CO=OA,OE=AB,故正确故正确,共

13、3个故选C【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键8D解析:D【分析】根据菱形的性质,得知A、C关于BD对称,根据轴对称的性质,将PM+PC转化为AP+PM,再根据两点之间线段最短得知AM为PM+PC的最小值【详解】四边形ABCD为菱形,A、C关于BD对称,连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值连接AC,四边形ABCD是菱形,AB=BC,又ABC=60,ABC为等边三角形,又BM=CM,AMBC,AM=,故选D.【点睛】本题考查了轴对

14、称-最短路径问题,解答过程要利用菱形的性质及等腰三角形的性质,转化为两点之间线段最短的问题来解二、填空题9【解析】【分析】二次根式有意义的条件就是被开方数是非负数,即可求解【详解】解:根据题意得:,解得故答案为:【点睛】本题主要考查了二次根式的意义和性质,解题的关键是掌握性质:二次根式中的被开方数必须是非负数,否则二次根式无意义1030【解析】【分析】因为菱形的对角线互相垂直,互相垂直的四边形的面积等于对角线乘积的一半【详解】解:菱形的面积为:故答案为:30【点睛】本题考查菱形的性质,关键知道菱形的对角线互相垂直,然后根据面积等于对角线乘积的一半求出结果11【解析】【分析】利用勾股定理直接计算

15、可得答案【详解】解:由勾股定理得:斜边故答案为:【点睛】本题考查的是勾股定理的应用,掌握勾股定理是解题的关键12E解析:【分析】首先翻折方法得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE的长度,然后在RtABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得ABE的面积【详解】解:长方形折叠,使点B与点D重合,ED=BE,A,设AE=xcm,则ED=BE=(9x)cm,在RtABE中,解得:x=4,ABE的面积为:34=6(),故答案为【点睛】本题考查了折叠的性质,长方形的性质,勾股定理的运用;解题的关键是熟练掌握折叠的性质,找准折叠前后相等的角和边13【

16、分析】首先运用待定系数法确定k,b应满足的一个确定的关系式,再根据条件确定k的值,进一步确定b的值,即可写出函数关系式【详解】解:设此函数关系式是ykx+b,把代入,得:,即又函数y的值随自变量x的值增大而增大,则不妨取,则,即,故答案是:(答案不唯一)【点睛】本题考查一次函数的性质,解题的关键是根据一次函数的性质灵活应用14E解析:9【详解】试题解析:连接EO,延长EO交AB于H.DEOC,CEOD,四边形ODEC是平行四边形,四边形ABCD是矩形,OD=OC,四边形ODEC是菱形,OECD,ABCD,ADCD,EHAB,ADOE,OADE,四边形ADEO是平行四边形,AD=OE=6,OHA

17、D,OB=OD,BH=AH, EH=OH+OE=3+6=9,故答案为:9.点睛:平行四边形的判定:两组对边分别平行的四边形是平行四边形.15(22020,22021-1)【分析】根据一次函数图象上点的坐标特征结合正方形的性质,可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、及B2、B3、B4、B5、的坐标,根据点的坐解析:(22020,22021-1)【分析】根据一次函数图象上点的坐标特征结合正方形的性质,可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、及B2、B3、B4、B5、的坐标,根据点的坐标变化可找出变化规律:“Bn(2n-1,2n-1)(n为正整数)”,依此规

18、律即可得出结论【详解】解:当y=0时,有x-1=0,解得:x=1,点A1的坐标为(1,0)四边形A1B1C1O为正方形,点B1的坐标为(1,1)同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),B2(2,3),B3(4,7),B4(8,15),B5(16,31),Bn(2n-1,2n-1)(n为正整数),点B2021的坐标是(22020,22021-1)故答案为:(22020,22021-1)【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键16【

19、分析】根据矩形的性质得C=90,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时点A在BC边上也随之移动,由此可以得到,当点E与B重合时,最小,当F与D重合时,最大,据此画图求解析:【分析】根据矩形的性质得C=90,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时点A在BC边上也随之移动,由此可以得到,当点E与B重合时,最小,当F与D重合时,最大,据此画图求解即可.【详解】解:四边形ABCD是矩形C=90,BC=AD=10cm,CD=AB=6cm当点E与B重合时,最小,如图所示:此时当F与D重合时,最大,如图所示:此时的取值范围为:故答案为:.【点睛】本题主要考查了矩形与折

20、叠,勾股定理等等,解题的关键在于确定E、F的位置.三、解答题17(1) ;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可;(2)先变形为原式 ,然后利用平方差公式计算;【详解】解:(1)+, , ;(2)(3解析:(1) ;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可;(2)先变形为原式 ,然后利用平方差公式计算;【详解】解:(1)+, , ;(2)(3)(+2), , , 【点睛】本题考查了平方差公式、二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题

21、目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍18【分析】直接利用勾股定理进而得出AC的长【详解】解:在ABC中,ACB90,AC2+BC2AB2,AC+AB10,BC4,设ACx,则AB10x,x2+解析:【分析】直接利用勾股定理进而得出AC的长【详解】解:在ABC中,ACB90,AC2+BC2AB2,AC+AB10,BC4,设ACx,则AB10x,x2+42(10x)2,解得:x,答:AC的长为【点睛】此题主要考查了勾股定理的应用,正确得出等式方程是解题关键19(1),;(2)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可(2)利用勾股定理

22、的逆定理判断即可(3)利用等高模型解决问题即可【详解】解:(1)BC解析:(1),;(2)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可(2)利用勾股定理的逆定理判断即可(3)利用等高模型解决问题即可【详解】解:(1)BC=,BD=(2)结论:不是直角理由:CD=,BC=,BD=,BC2+CD2BD2,BCD90(3)如图,四边形ABED即为所求【点睛】本题考查作图-应用与设计作图,勾股定理,勾股定理的逆定理,四边形的面积等知识,解题的关键是掌握勾股定理以及勾股定理的逆定理解决问题,属于中考常考题型20(1)见解析;(2)60【分析】(1)根据垂直平分线的性质,可

23、以得到,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由解析:(1)见解析;(2)60【分析】(1)根据垂直平分线的性质,可以得到,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由题意,可以得到垂直平分 从而得出 结合题意可得 的度数,进而求得的度数【详解】(1)证明:垂直平分,四边形是矩形,四边形是菱形(2)为中点,垂直平分,为等边三角形,【点睛】本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及

24、判定定理是解题关键21(1);(2)4【解析】【分析】(1)根据绝对值的非负性和算数平方根的非负性得出m和n的值,代入即可求解;(2)根据二次根式有意义的范围求解x,进而求得y,最后代入即可求解【详解】(1解析:(1);(2)4【解析】【分析】(1)根据绝对值的非负性和算数平方根的非负性得出m和n的值,代入即可求解;(2)根据二次根式有意义的范围求解x,进而求得y,最后代入即可求解【详解】(1),16的平方根为;(2)根据使二次根式有意义的条件得x=24,y=-8原式的值为4【点睛】本题考查了绝对值的非负性,算术平方根的非负性,二次根式的定义,关键是掌握使二次根式有意义的条件22(1)y=20

25、x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x即可【详解】解:(1)设y=kx+b,代入(20,10解析:(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x即可【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:,解得:,y=20x-300;(2)取y=0,则20x-300=0,解得x=15,免费行李的最大质量为15kg【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即

26、可求出x的值23(1)见解析;(2)FH+FE=DF,理由见解析;(3)【分析】(1)如图1中,证明AFBDGA(AAS)可得结论(2)结论:FH+FE=DF如图2中,过点D作DKAE于K,DJ解析:(1)见解析;(2)FH+FE=DF,理由见解析;(3)【分析】(1)如图1中,证明AFBDGA(AAS)可得结论(2)结论:FH+FE=DF如图2中,过点D作DKAE于K,DJBF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PTCD于T,PKAD于K设PT=b证明KPJ是等腰直角三角形,推出点P在线段JR上运动,求

27、出JR即可解决问题【详解】解:(1)如图1中,四边形ABCD是正方形,AB=AD,BAD=90,DGAE,AEBH,AFB=DGH=90,FAB+DAG=90,DAG+ADG=90,BAF=ADG,AFBDGA(AAS),AF=DG,BF=AG,BF-DG=AG-AF=FG(2)结论:FH+FE=DF理由:如图2中,过点D作DKAE于K,DJBF交BF的延长线于J,四边形ABCD是正方形,BAD=ADE=90,AB=AD,AEBH,AFB=90,DAE+EAB=90,EAB+ABH=90,DAE=ABH,ABHDAE(ASA),AH=AE,DE=EC=CD,CD=AD,AH=DH,DE=DH,

28、DJBJ,DKAE,J=DKE=KFJ=90,四边形DKFJ是矩形,JDK=ADC=90,JDH=KDE,J=DKE=90,DJHDKE(AAS),DJ=DK,JH=EK,四边形DKFJ是正方形,FK=FJ=DK=DJ,DF=FJ,FH+FE=FJ-HJ+FK+KE=2FJ=DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PTCD于T,PKAD于K设PT=bABHDAE,AH=DE,EDH=90,HP=PE,PD=PH=PE,PKDH,PTDE,PKD=KDT=PTD=90,四边形PTDK是矩形,PT=DK=b,PK=DT,PH=PD=PE,PKDH,PTDE,DH

29、=2DK=2b,DE=2DT,AH=DE=1-2b,PK=DE=-b,JK=DJ-DK=-b,PK=KJ,PKJ=90,KJP=45,点P在线段JR上运动,JR=DJ=,点P的运动轨迹的长为【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题24(1),(2)直角;(3),存在,【解析】【分析】(1)先求出,再根据待定系数法求直线l2的函数解析式;(2)把三点坐标用含的代数式来表示,利用勾股定理的逆定理进行判断即可;(3)根解析:(1),(2)直角;(3),存在,【解析】【分析】(1)

30、先求出,再根据待定系数法求直线l2的函数解析式;(2)把三点坐标用含的代数式来表示,利用勾股定理的逆定理进行判断即可;(3)根据矩形的性质,用表示矩形的周长,根据直线l3把矩形ABCD的周长平分建立方程求解;联立,求出的坐标,求出的坐标,根据面积相等建立方程,解方程即可得到答案【详解】解:(1)令,解得:,即,令,得,即,设直线,代入两点得:,解得:,;(2)由两点间的距离公式得:,则满足:,为直角三角形,为直角(3)如图,四边形为矩形,则点的纵坐标与点相同,即,设代入得,即,由题意得:,矩形的周长为,直线平分矩形的周长,则一定在线段上,则,则,解得:,联立与得:,解得:,即,联立与得:,解得

31、:,即, 则过一,三象限,则,此时点位于轴下方时,则,即,解得:,经检验:是原方程的根且符合题意,同理,当此时点位于轴上方时,则,解得:,经检验:是原方程的根且符合题意,综上所述:存在,【点睛】本题考查了一次函数的综合运用、勾股定理、矩形的性质、解题的关键是熟练掌握求解一次函数解析式,通过数学结合思想及分论讨论思想来求解,难度较大25(1)12;(2)证明见详解;(3)或t=4s【分析】(1)由勾股定理求出AD即可;(2)由等腰三角形的性质和平行线的性质得出PBQ=PQB,再由等腰三角形的判定定理即可得出结论;(3解析:(1)12;(2)证明见详解;(3)或t=4s【分析】(1)由勾股定理求出

32、AD即可;(2)由等腰三角形的性质和平行线的性质得出PBQ=PQB,再由等腰三角形的判定定理即可得出结论;(3)分两种情况:当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQMD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQMD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可【详解】(1)解:BDAC,ADB=90,(cm),(2)如图所示:AB=AC,ABC=C,即PBQ=C,

33、PQAC,PQB=C,PBQ=PQB,PB=PQ;(3)分两种情况:当点M在点D的上方时,如图2所示:根据题意得:PQ=BP=t,AM=4t,AD=12,MD=AD-AM=12-4t,PQAC,PQMD,当PQ=MD时,四边形PQDM是平行四边形,即:当t=12-4t,时,四边形PQDM是平行四边形,解得:(s);当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,MD=AM-AD=4t-12,PQAC,PQMD,当PQ=MD时,四边形PQDM是平行四边形,即:当t=4t-12时,四边形PQDM是平行四边形,解得:t=4(s);综上所述,当或t=4s时,以P、

34、Q、D、M为顶点的四边形为平行四边形【点睛】本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键26(1)见解析;(2)6+3;(3)见解析【分析】(1)证明BECAFC(SAS),可得结论(2)AEF的周长AE+AF+EFAE+BE+EFAB+EF6+EF,推出EF的值最解析:(1)见解析;(2)6+3;(3)见解析【分析】(1)证明BECAFC(SAS),可得结论(2)AEF的周长AE+AF+EFAE+BE+EFAB+EF6+EF,推出EF的值最小时,AEF的周长最小

35、,因为ECF是等边三角形,推出EFCE,推出当CEAB时,CE的值最小(3)求出BD6,再求出BMDN2,可得BMMNDN2解决问题【详解】(1)证明:ABC,ACD是全等的等边三角形,ACBC,ABCDACBCA60,AFBE,在CBE和CAF中,BECAFC(SAS),CECF,BCEACF,BCE+ACEACF+ACE,ECFBCA60,CEF是等边三角形(2)解:AEF的周长AE+AF+EFAE+BE+EFAB+EF6+EF,EF的值最小时,AEF的周长最小,ECF是等边三角形,EFCE,当CEAB时,CE的值最小,三角形ABC是等边三角形,ABC=60,BCE=30,BE=,CE,AEF的周长的最小值为6+3,故答案为:6+3(3)证明:ABC,ACD是全等的等边三角形,ACBDAOCO,BODO,ABOABC30BE3,ABAC6,点E为AB中点,点F为AD中点,AOAB3,BO,BD6,ABC是等边三角形,BEAE3,CEAB,BM2EM,BM2,同理可得DN2,MNBDBMDN2BMMNDN【点睛】此题考查了三角形全等,勾股定理,线段最值问题,解题的关键是根据题意找到题目中边角之间的关系

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服