1、人教版初二数学上册压轴题强化检测试题含解析(一)1操作发现:如图1,D是等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,易证AF=BD(不需要证明);类比猜想:如图2,当动点D运动至等边ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。深入探究:如图3,当动点D在等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF,BF你能发现AF,BF与AB有何数量关系,并证明你发现的结论。如图4,当动点D运动至等边ABC边BA的延长线上时,其它作
2、法与图3相同,猜想AF,BF与AB在上题中的结论是否仍然成立,若不成立,请给出你的结论并证明。2如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数3(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结
3、论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;5已知ABC是等边三角形,ADE的顶点D在边BC上(1)如图1,若ADDE,AED60,求ACE的度数;(2)如图2,若点D为BC的中点,AEAC,EAC90,连CE,求证:CE2BF;(3)如图3,若点D为BC的一动点,AED90,ADE30,已知ABC的面积为4,当点D在BC上运动时,ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由5在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接
4、AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标6如图,已知中,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为(1)求的取值范围(2)当时,问与是否全等,并说明理由(3)时,若为等腰三角形,求的值7阅读材料1:对于两个正实数,由于,所以,即,所以得到,并且当时,阅读材料2:若,则 ,因为,所以由阅读材料1可得:,即的最小值是2,
5、只有时,即=1时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小 (其中1); -2(其中-1)(2)已知代数式变形为,求常数的值(3)当= 时,有最小值,最小值为 (直接写出答案).8如图1,在平面直角坐标系中,且ACB90,ACBC(1)求点B的坐标;(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;(3)如图3,若在点B处有一个等腰RtBDG,且BDDG,BDG90,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论【参考答案】2成立,证明见详解;AF+BF
6、=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=解析:成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=AB,利用全等三角形BCDACF(SAS)的对应边BD=AF;同理BCFACD(SAS),则BF=AD,所以AF+BF=AB;结论不成立新的结论是AF=AB+BF;通过证明BCFACD(SAS),则BF=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF【详解
7、】解:类比猜想:如图2中,ABC是等边三角形(已知),BC=AC,BCA=60(等边三角形的性质);同理知,DC=CF,DCF=60;BCA+DCA=DCF+DCA,即BCD=ACF;在BCD和ACF中, BCDACF(SAS),BD=AF(全等三角形的对应边相等);深入探究:如图示AF+BF=AB;证明如下:由条件可知:BCA-DCA=DCF-DCA,即BCD=ACF,同理可证BCDACF(SAS),则BD=AF;同理BCFACD(SAS),则BF=AD,AF+BF=BD+AD=AB;结论不成立新的结论是AF=AB+BF;如图示:证明如下:等边DCF和等边DCF,由同理可知:在BCF和ACD
8、中, BCFACD(SAS),BF=AD(全等三角形的对应边相等);又由知,AF=BD;AF=BD=AB+AD=AB+BF,即AF=AB+BF【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.3(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如
9、图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,
10、【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键4(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=D解析:(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点
11、G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,
12、AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等5(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CF解析:(1)60;(2)见解析;(3)不变,【分析】(1)由题意,先证ADE是等边三角形,再证BADCAE,得ACE=B=60;(2)由题意,先求出BEC=30,然后求出CFE=90,利用直角三角形中3
13、0度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明ADF是等边三角形,然后证明EGFEHA,结合HG是定值,即可得到答案【详解】解:(1)根据题意,ADDE,AED60,ADE是等边三角形,AD=AE,DAE=60,AB=AC,BAC=60,即,BADCAE,ACE=B=60;(2)连CF,如图:AB=AC=AE,AEB=ABE,BAC=60,EAC=90,BAE=150,AEB=ABE=15;ACE是等腰直角三角形,AEC=45,BEC=30,EBC=45,AD垂直平分BC,点F在AD上,CF=BF,FCB=EBC=45,CFE=90,在直角CE
14、F中,CFE=90,CEF=30,CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:AED90,EF=AE,DE是中线,也是高,ADF是等腰三角形,ADE30,DAE=60,ADF是等边三角形;由(1)同理可求ACF=ABC=60,ACF=BAC=60,CFAB,过E作EGCF于G,延长GE交BA的延长线于点H,易证EGFEHA,EH=EG=HG,HG是两平行线之间的距离,是定值,SABESABC;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正
15、确的作出辅助线,从而进行解题6(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N
16、分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM
17、的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解7(1);(2)时
18、,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.【详解】(1)依题意,.(2)时,与全等,证明:时,在和中,点是的中点,(SAS).(3)当时,有;当时,有,(舍去);当时,有,;综上,当或时,为等
19、腰三角形.【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.8(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料解析:(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料(2)可知时(即x=0,)有最小值【详
20、解】解:(1),所以;当时,由阅读材料1可得,所以;(2),所以;(3)x0,即:当时,有最小值,当x=0时,有最小值为3.【点睛】本题主要考查了分式的混合运算和配方法的应用读懂材料并加以运用是解题的关键9(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CT解析:(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CTBH2,可得结论;(2)结论:MNME+NF证明BF
21、NBEK(SAS),推出BNBK,FBNEBK,再证明BMNBMK(SAS),推出MNMK,可得结论;(3)结论:DHCH,DHCH如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点M证明JDC是等腰直角三角形,可得结论【详解】解:(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点HA(0,4),C(2,2),OA4,OTCT2,AT4+26,ACBATCH90,CAT+ACT90,BCH+CBH90,CATBCH,CACB,ATCCHB(AAS),ATCH6,CTBH2,THCHCT4,B(4,-4);(2)结论:MNME+NF理由:在射线OE上
22、截取EKFN,连接BKB(4,4),BEy轴,BFx轴,BEBF4,BEOBFOEOF90,四边形BEOF是矩形,EBF90,EKFN,BFNBEK90,BFNBEK(SAS),BNBK,FBNEBK,NBKFBE90,MBN45,MBNBMK45,BMBM,BMNBMK(SAS),MNMK,MKME+EK,MNEM+FN;(3)结论:DHCH,DHCH理由:如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点MAHHG,AHJGHD,HJHD,AHJGHD(SAS),AJDG,AJHDGH,AJDM,JACAMD,DGBD,AJBD,MCBBDM90,CBD+CMD180,AMD+CMD180,AMDCBD,CAJCBD,CACB,CAJCBD(SAS),CJCD,ACJBCD,JCDACB90,JHHD,CHDJ,CHJHHD,即CHDH,CHDH【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题