1、人教版七7年级下册数学期末解答题压轴题试卷含答案(1)一、解答题1(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为正方形的周长为,则_(填“”,或“”,或“”)(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?2有一块面积为100cm2的正方形纸片(1)该正方形纸片的边长为 cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3小丽能用这
2、块纸片裁剪出符合要求的纸片吗?3如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?4如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,
3、并求它的边长5有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二、解答题6如图1,点在直线上,点在直线上,点在,之间,且满足(1)证明:;(2)如图2,若,点在线段上,连接,且,试判断与的数量关系,并说明理由;(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则_7已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD
4、与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系8如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系9已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、E
5、ND的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数10已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数三、解答题11如图1所示:点E为BC上一点,AD,ABCD
6、(1)直接写出ACB与BED的数量关系;(2)如图2,ABCD,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB的度数不变,如图3,BM平分EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)12已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P运动到线段AC上时,直接写出的度数;(2)当点P运动到图2的位置时,猜想与之间
7、的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明13已知直线,点分别为, 上的点(1)如图1,若, ,求与的度数;(2)如图2,若, ,则_;(3)若把(2)中“, ”改为“, ”,则_(用含的式子表示)14综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中
8、的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由15如图1,在平面直角坐标系中,且满足,过作轴于(1)求三角形的面积(2)发过作交轴于,且分别平分,如图2,若,求的度数(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由四、解答题16(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、
9、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由17在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由18RtABC中,C=90,点D、E分别是ABC边AC、BC上的点,点P是一动点.令PDA=1,PEB=2,DPE=.(1)若点P在线段AB上,如图(1)所示,且=50,则1+2= ;(2)若点P
10、在边AB上运动,如图(2)所示,则、1、2之间的关系为: ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由. (4)若点P运动到ABC形外,如图(4)所示,则、1、2之间的关系为:.19在中,点在直线上运动(不与点、重合),点在射线上运动,且,设(1)如图,当点在边上,且时,则_,_;(2)如图,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图中画出图形,并给予证明(画图痕迹用黑色签字笔加粗加黑)20如图,点A、B分别在直线MN、GH上,点O在直线MN、
11、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值【参考答案】一、解答题1(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商
12、法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,设大正方形的边长为xcm, , 大正方形的边长为cm;(2)设圆的半径为r,由题意得,设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:正方形的面积为900cm2,正方形的边长为30cm长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,长方形纸片的长大于正方形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应
13、用,主要是对学生无理数运算及比较大小进行了考查2(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)长方形纸片的长宽之比为4:3,设长方形纸片的长为4xcm,则宽为3xcm,则4x3x90,12x290,x2
14、,解得:x或x-(负值不符合题意,舍去),长方形纸片的长为2cm,56,102,小丽不能用这块纸片裁出符合要求的纸片【点睛】本题考查了算术平方根解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小3(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1
15、)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式4(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正解析:(1)5;(2);(3)能,【分析】(1)易得5个小正方形的面积的和,那么就得到了
16、大正方形的面积,求得面积的算术平方根即可为大正方形的边长(2)求出斜边长即可(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等115=5,边长为,如图(1)(2)斜边长=,故点A表示的数为:;点A表示的相反数为:(3)能,如图拼成的正方形的面积与原面积相等1110=10,边长为考点:1作图应用与设计作图;2图形的剪拼5(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解
17、解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二、解答题6(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CA
18、N,ACF,BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据ADBC,得到DAC=120,求出CAE即可得到结论;(3)作CFST,设CBT=,得到CBT=BCF=,分别表示出CAN和CAE,即可得到比值【详解】解:(1)如图,连接,(2),理由:作,则 如图,设,则,即(3)作,则 如图,设,则,故答案为【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式7(1)150;(2)OCD+BOE=360-;(3)AOB=BOE
19、【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)解析:(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE
20、-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行
21、线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键8(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性
22、质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键9(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB解析
23、:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,F
24、NDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(
25、BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键10(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360解析:(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC
26、=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=
27、PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用三、解答题11(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解析:(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作
28、HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发生变化如答图3所示,过点E作EQDN设,由(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出
29、角度的度数是解题的关键12(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;解析:(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;(2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论;(3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等
30、量代换即可得出结论【详解】解:(1)如图,过点作,又,且点运动到线段上,平分,平分,;(2)猜想,证明如下:如图,过点作,过点作,由(1)已得:,同理可得:,;(3),证明如下:如图,过点作,过点作,由(1)已得:,即,即,即,即【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键13(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行
31、线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,根据, 求解即可;(3)同理(1)的求法,根据, 求解即可;【详解】解:(1)如图示,分别过点作, ,又,(2)如图示,分别过点作, ,又,故答案为:160;(3)同理(1)的求法, ,又, ,故答案为:【点睛】本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键14(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1解析:(1);(2)理由见解析;(3),理由见解
32、析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平
33、移的性质和平行线的性质是解题的关键15(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积4;(2)由于CBy轴,BDAC,则CABABD,即345690,过E作EFAC,则BDACEF,然后利用角平分线的定义可得到341,562,所以AED129045;(3)先根据待定系数法确定直
34、线AC的解析式为yx1,则G点坐标为(0,1),然后利用SPACSAPGSCPG进行计算【详解】解:(1)由题意知:ab,ab40,解得:a2,b2, A(2,0),B(2,0),C(2,2),SABC;(2)CBy轴,BDAC,CABABD,345690,过E作EFAC,BDAC,BDACEF,AE,DE分别平分CAB,ODB,341,562,AED129045;(3)存在理由如下:设P点坐标为(0,t),直线AC的解析式为ykxb,把A(2,0)、C(2,2)代入得:,解得,直线AC的解析式为yx1,G点坐标为(0,1),SPACSAPGSCPG|t1|2|t1|24,解得t3或1,P点坐
35、标为(0,3)或(0,1)【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等四、解答题16(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交
36、AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB
37、=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用17(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF;
38、 (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识18(1)140;(2)1+