资源描述
八年级上册压轴题强化数学试卷带解析(一)
1.阅读下列材料,完成相应任务.
数学活动课上,老师提出了如下问题:
如图1,已知中,是边上的中线.
求证:.
智慧小组的证法如下:
证明:如图2,延长至,使,
∵是边上的中线∴
在和中
∴(依据一)∴
在中,(依据二)
∴.
任务一:上述证明过程中的“依据1”和“依据2”分别是指:
依据1:______________________________________________;
依据2:______________________________________________.
归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
任务二:如图3,,,则的取值范围是_____________;
任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由.
2.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限.
(1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________;
(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;
(3)试探究(2)中OD,OE与DF之间的关系,并说明理由.
3.已知,.
(1)若,作,点在内.
①如图1,延长交于点,若,,则的度数为 ;
②如图2,垂直平分,点在上,,求的值;
(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.
4.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可)
(2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形.
5.在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接.
当点在线段上时,
①若点与点重合时,请说明线段;
②如图2,若点不与点重合,请说明;
当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明).
6.如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)证明:△ABE为等边三角形;
(2)若CD⊥AB于点F,求线段CD的长;
(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?
7.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点.
(1)若+b2-10b+25=0,判断△AOB的形状,并说明理由;
(2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长;
(3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围.
8.如图,等边中,点在上,延长到,使,连,过点作与点.
(1)如图1,若点是中点,
求证:①;②.
(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;
(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论.
【参考答案】
2.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判
解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判定方法判断即可;
依据2:根据三角形三边关系判断;
任务二:可根据任务一的方法直接证明即可;
任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可.
【详解】解:任务一:
依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);
依据2:三角形两边的和大于第三边.
任务二:
任务三:EF=2AD.理由如下:
如图延长AD至G,使DG=AD,
∵AD是BC边上的中线
∴BD=CD
在△ABD和△CGD中
∴△ABD≌△CGD
∴AB=CG,∠ABD=∠GCD
又∵AB=AE
∴AE=CG
在△ABC中,∠ABC+∠BAC+∠ACB=180°,
∴∠GCD+∠BAC+∠ACB=180°
又∵∠BAE=90°,∠CAF=90°
∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180°
∴∠EAF=∠GCD
在△EAF和△GCA中
∴△EAF≌△GCA
∴EF=AG
∴EF=2AD.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键.
3.(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证
解析:(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;
(3)证明得到,,又由(2)可知,进一步可得.
(1)
解:∵,即:,
∴,,
作轴交于点D,
∵,,
∴,
在和中,
∴,
∴,,
∴,即.
(2)
证明:∵,BE平分,
∴,,
在和中,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
在和中,
∴,
∴,即CG垂直平分EF.
(3)
解:,理由如下:
∵,
,
∴,
在和中,
∴,
∴,,
∵,
∴,
又由(2)可知,
∴,即.
【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.
4.(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证
解析:(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.
(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.
【详解】(1)①连接AE,在,因为,,
,,
,,
,
,
,
,,
,
,
,
故答案为:.
②过C作交DF延长线于G,连接AE
AD垂直平分BE,
,
,
,
,
故答案为:;
(2)以AB向下构造等边,连接DK,
延长AD,BK交于点T,
,,
,
,
,,
等边中,,,
,,
在和中,
,
等边三角形三线合一可知,BD是边AK的垂直平分线,
,
,
,
,
故答案为:.
【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.
5.(1)见解析;(2)成立,见解析;(3)见解析
【分析】(1)运用AAS证明△ADB≌△CEA即可;
(2)运用AAS证明△ADB≌△CEA即可;
(3)运用SAS证明△DBF≌△EAF,后运
解析:(1)见解析;(2)成立,见解析;(3)见解析
【分析】(1)运用AAS证明△ADB≌△CEA即可;
(2)运用AAS证明△ADB≌△CEA即可;
(3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可.
【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)如图2,
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=,
∴∠DBA=∠CAE,
在△ADB和△CEA中,,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)如图3,
由(2)可知,△ADB≌△CEA,
∴BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均为等边三角形,
∴∠ABF=∠CAF=60°,BF=AF,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵在△DBF和△EAF中,
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.
【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键.
6.(1)①证明见解析;②证明见解析;(2)BF=AE-CD
【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得
解析:(1)①证明见解析;②证明见解析;(2)BF=AE-CD
【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;
(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.
【详解】(1)①证明:
,且E与A重合,
是等边三角形
在和中
②如图2,过点A做AG∥EF交BC于点G,
∵∠ADB=60° DE=DF
∴△DEF为等边三角形
∵AG∥EF
∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°
∴∠DAG=∠AGD
∴DA=DG
∴DA-DE=DG-DF,即AE=GF
由①易证△AGB≌△ADC
∴BG=CD
∴BF=BG+GF=CD+AE
(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,
由(1)可知,AE=GF,DC=BG,
故.
【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
7.(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等.
【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论;
(2)由(1)知∠ABE
解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等.
【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论;
(2)由(1)知∠ABE=∠BEA=∠EAB=60°,进而得出∠AOF=30°,利用含30°角的直角三角形的性质得到AF、OF的长.再证明∠ACF=∠AOF=30°,∠D=30°,同理得出CF、DF的长,进而可得出结论.
(3)设运动的时间为t秒.然后分四种情况讨论:①当点P、Q分别在y轴、x轴上时,;②当点P、Q都在y轴上时,;③当点P在x轴上,Q在y轴且二者都没有提前停止时,;④当点P在x轴上,Q在y轴且点Q提前停止时,,列方程求解即可.
【详解】(1)在△AOB与△EOB中,∵∠AOB=∠EOB,OB=OB,∠EBO=∠ABO,∴△AOB≌△EOB (ASA),∴AO=EO=3,BE=AB=6,∴AE=BE=AB=6,∴△ABE为等边三角形.
(2)由(1)知∠ABE=∠BEA=∠EAB=60°.
∵CD⊥AB,∴∠AOF=30°,∴AF=.
在Rt△AOF中,OF=.
∵∠CAH=∠BAO =60°,∴∠CAF =60°,∠ACF=∠AOF=30°,∴AO=AC.
又∵CD⊥AB,∴CF=.
∵AB=6,AF=,∴BF=.
在Rt△BDF中,∠DBF =60°,∠D=30°,∴BD=.
由勾股定理得:∴DF=,∴CD=.
(3)设运动的时间为t秒.
①当点P、Q分别在y轴、x轴上时,,PO=QO得:,解得:(秒);
②当点P、Q都在y轴上时,,PO=QO得:,解得(秒);
③当点P在x轴上,Q在y轴且二者都没有提前停止时,,则PO=QO,得:,解得:,不合题意,舍去.
④当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒).
综上所述:当两动点运动时间为、、6秒时,△OPM与△OQN全等.
【点睛】本题考查了全等三角形的判定、含30°角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质.正确分类讨论是解题的关键.
8.(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)
解析:(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度;
(3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长.
(1)
解:结论:△OAB是等腰直角三角形;理由如下:
∵+b2-10b+25=0,即,
∴,解得:,
∴A(−5,0),B(0,5),
∴OA=OB=5,
∴△AOB是等腰直角三角形.
(2)
解:∵AM⊥OQ,BN⊥OQ,
∴,
,
∴,
∴,
∵在△AMO与△ONB中,
∴△AMO≌△ONB(AAS),
∴AM=ON=4,BN=OM,
∵MN=7,
∴OM=3,
∴BN=OM=3.
(3)
解:结论:PB的长为定值.理由如下,
作EK⊥y轴于K点,如图所示:
∵△ABE为等腰直角三角形,
∴AB=BE,∠ABE=90°,
∴∠EBK+∠ABO=90°,
∵∠EBK+∠BEK=90°,
∴∠ABO=∠BEK,
∵在△AOB和△BKE中,
∴△AOB≌△BKE(AAS),
∴OA=BK,EK=OB,
∵△OBF为等腰直角三角形,
∴OB=BF,
∴EK=BF,
∵在△EKP和△FBP中,
∴△PBF≌△PKE(AAS),
∴PK=PB,
∴PB=BK=OA=.
【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键.
9.(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论
解析:(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论;
(3)结论仍然成立,过点D作DM//BC交AC于M,证明,可得结论.
(1)
证明:如图
①∵为等边三角形,
∴,
又为中点,
∴ ,
∵,
∴ ,
∴,
∴;
②∵,
∴为等腰三角形,
∵,
∴.
(2)
仍然成立,理由如下:
如图,过点D作DM//BC交AC于M
∵为等边三角形,
∴,
∴,
∵,
∴,
∴,为等边三角形,
∴,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,
而,
∴.
(3)
的结论仍然成立,理由如下:如图为所求作图.
作交的延长线于,
易证为等边三角形,
,,
而,
∴,
∵,,
∴,
∵,,
∴,
在和中,
,
∴,
∴,
∵,
∴.
【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题.
展开阅读全文