收藏 分销(赏)

八年级上册压轴题强化数学试卷带解析(一).doc

上传人:w****g 文档编号:1922402 上传时间:2024-05-11 格式:DOC 页数:19 大小:1.08MB
下载 相关 举报
八年级上册压轴题强化数学试卷带解析(一).doc_第1页
第1页 / 共19页
八年级上册压轴题强化数学试卷带解析(一).doc_第2页
第2页 / 共19页
八年级上册压轴题强化数学试卷带解析(一).doc_第3页
第3页 / 共19页
八年级上册压轴题强化数学试卷带解析(一).doc_第4页
第4页 / 共19页
八年级上册压轴题强化数学试卷带解析(一).doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、八年级上册压轴题强化数学试卷带解析(一)1阅读下列材料,完成相应任务数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线求证:智慧小组的证法如下:证明:如图2,延长至,使,是边上的中线在和中(依据一)在中,(依据二)任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:_;依据2:_归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”“倍长中线法”多用于构造全等三角形和证明边之间的关系任务二:如图3,则的取值范围是_;任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,;中,连接试探究与

2、的数量关系,并说明理由2如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限(1)若点A(a,0),B(0,b),且a、b满足,则_,_,点C的坐标为_;(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;(3)试探究(2)中OD,OE与DF之间的关系,并说明理由3已知,(1)若,作,点在内如图1,延长交于点,若,则的度数为 ;如图2,垂直平分,点在上,求的值;(2)如图3,若,点在边上,点在边上,连接,求的度数4(1)如图1,已知:在ABC中,BAC=90,AB=AC,直线m经过点A

3、,BD直线m,CE直线m,垂足分别为点D、E 证明:DE=BD+CE(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可)(2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有BDA=AEC=BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若BDA=AEC=BAC,试证明DEF是等边三角形5在中,点在边上,且是射线上一动点(不与点重合,

4、且),在射线上截取,连接当点在线段上时,若点与点重合时,请说明线段;如图2,若点不与点重合,请说明;当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明)6如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作DBO=ABO,点H为y轴上的点,CAH=BAO,BD交y轴于点E,直线DO交AC于点C(1)证明:ABE为等边三角形;(2)若CDAB于点F,求线段CD的长;(3)动点P从A出发,沿AOB路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿BOA路线运动,速度为2个单位长度每秒,到A点处停止运动两点同时开始运动,都要到达相应的终

5、点才能停止在某时刻,作PMCD于点M,QNCD于点N问两动点运动多长时间时OPM与OQN全等?7如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长;(3)如图,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其

6、取值范围8如图,等边中,点在上,延长到,使,连,过点作与点(1)如图1,若点是中点,求证:;(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论【参考答案】2任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三

7、:EF=2AD,见解析【分析】任务一:依据1:根据全等的判定方法判断即可;依据2:根据三角形三边关系判断;任务二:可根据任务一的方法直接证明即可;任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可【详解】解:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边任务二:任务三:EF=2AD理由如下:如图延长AD至G,使DG=AD,AD是BC边上的中线BD=CD在ABD和CGD中ABDCGDAB=CG,ABD=GCD 又AB=AEAE=CG在ABC中,ABC+BAC+ACB=180,GCD+BAC+ACB=180又BA

8、E=90,CAF=90EAF+BAC=360-(BAE+CAF)=180EAF=GCD在EAF和GCA中EAFGCA EF=AGEF=2AD【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键3(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证解析:(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证明

9、,得到,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;(3)证明得到,又由(2)可知,进一步可得(1)解:,即:,作轴交于点D,在和中,即(2)证明:,BE平分,在和中,在和中,即CG垂直平分EF(3)解:,理由如下:,在和中,又由(2)可知,即【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键4(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角

10、性质计算可得;构造“一线三垂直”模型,证解析:(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得【详解】(1)连接,在,因为,故答案为:过作交延长线于,连接垂直平分,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,等边中,在和中,等边三角形三线合一可知,BD是边AK的垂直平分线,故答案为: 【点睛】考查了等腰直角三角

11、形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据5(1)见解析;(2)成立,见解析;(3)见解析【分析】(1)运用AAS证明ADBCEA即可;(2)运用AAS证明ADBCEA即可;(3)运用SAS证明DBFEAF,后运解析:(1)见解析;(2)成立,见解析;(3)见解析【分析】(1)运用AAS证明ADBCEA即可;(2)运用AAS证明ADBCEA即可;(3)运用SAS证明DBFEAF,后运用有一个角是60的等腰三角形是等边三角形证明即可【详解】(1)如图1,BD直线m,CE直线m,BDA

12、=CEA=90,BAC=90,BAD+CAE=90BAD+ABD=90,CAE=ABD,在ADB和CEA中,ADBCEA(AAS),AE=BD,AD=CE,DE=AE+AD=BD+CE;(2)如图2,BDA=BAC=,DBA+BAD=BAD+CAE=,DBA=CAE,在ADB和CEA中,ADBCEA(AAS),AE=BD,AD=CE,DE=AE+AD=BD+CE;(3)如图3,由(2)可知,ADBCEA,BD=AE,DBA=CAE,ABF和ACF均为等边三角形,ABF=CAF=60,BF=AF,DBA+ABF=CAE+CAF,DBF=FAE,在DBF和EAF中, ,DBFEAF(SAS),DF

13、=EF,BFD=AFE,DFE=DFA+AFE=DFA+BFD=60,DEF为等边三角形【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键6(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得解析:(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结

14、论;过点A做AGEF交BC于点G,由DEF为等边三角形得到DADG,再推出AEGF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论【详解】(1)证明:,且E与A重合,是等边三角形在和中 如图2,过点A做AGEF交BC于点G,ADB60DEDFDEF为等边三角形AGEFDAGDEF60,AGDEFD60DAGAGDDADGDADEDGDF,即AEGF由易证AGBADCBGCDBFBGGFCDAE(2)如图3,和(1)中相同,过点A做AGEF交BC于点G,由(1)可知,AE=GF,DC=BG,故【点睛】本题

15、考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键7(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE=BEA=EAB=60,进而得出AOF=30,利用含30角的直角三角形的性质得到AF、OF的长再证明ACF=AOF=30,D=30,同

16、理得出CF、DF的长,进而可得出结论(3)设运动的时间为t秒然后分四种情况讨论:当点P、Q分别在y轴、x轴上时,;当点P、Q都在y轴上时,;当点P在x轴上,Q在y轴且二者都没有提前停止时,;当点P在x轴上,Q在y轴且点Q提前停止时,列方程求解即可【详解】(1)在AOB与EOB中,AOB=EOB,OB=OB,EBO=ABO,AOBEOB (ASA),AO=EO=3,BE=AB=6,AE=BE=AB=6,ABE为等边三角形(2)由(1)知ABE=BEA=EAB=60CDAB,AOF=30,AF=在RtAOF中,OF=CAH=BAO =60,CAF =60,ACF=AOF=30,AO=AC又CDAB

17、,CF=AB=6,AF=,BF=在RtBDF中,DBF =60,D=30,BD=由勾股定理得:DF=,CD=(3)设运动的时间为t秒当点P、Q分别在y轴、x轴上时,PO=QO得:,解得:(秒);当点P、Q都在y轴上时,PO=QO得:,解得(秒);当点P在x轴上,Q在y轴且二者都没有提前停止时,则PO=QO,得:,解得:,不合题意,舍去当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒)综上所述:当两动点运动时间为、6秒时,OPM与OQN全等【点睛】本题考查了全等三角形的判定、含30角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质正确分类讨论是解题的关键8(1)AOB为等腰直

18、角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)解析:(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)由OAOB,利用AAS得到AMOONB,用对应线段相等求长度;(3)如图,作EKy轴于K点,利用AAS得到AOBBKE,利用全等三角形对应边相等得到OABK,EKOB,再利用AAS得到PBFPKE,寻找相等线段,并进行转化,求PB的长(1)解:结论:OAB是等腰

19、直角三角形;理由如下:b210b250,即,解得:,A(5,0),B(0,5),OAOB5,AOB是等腰直角三角形(2)解:AMOQ,BNOQ,在AMO与ONB中,AMOONB(AAS),AMON4,BNOM,MN7,OM3,BNOM3(3)解:结论:PB的长为定值理由如下,作EKy轴于K点,如图所示:ABE为等腰直角三角形,ABBE,ABE90,EBKABO90,EBKBEK90,ABOBEK,在AOB和BKE中,AOBBKE(AAS),OABK,EKOB,OBF为等腰直角三角形,OBBF,EKBF,在EKP和FBP中,PBFPKE(AAS),PKPB,PBBKOA【点睛】本题属于三角形综合

20、题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键9(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论解析:(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论;(3)结论仍然成立,过点D作DM/BC交AC于M,证明,可得结论(1)证明:如图为等边三角形,又为中点, , ,;,为等腰三角形,(2)仍然成立,理由如下:如图,过点D作DM/BC交AC于M为等边三角形,为等边三角形,在和中, ,而,(3)的结论仍然成立,理由如下:如图为所求作图作交的延长线于,易证为等边三角形,而,在和中,【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服