收藏 分销(赏)

人教版初二上学期压轴题强化数学综合检测试题答案[001].doc

上传人:w****g 文档编号:1920651 上传时间:2024-05-11 格式:DOC 页数:19 大小:695.54KB
下载 相关 举报
人教版初二上学期压轴题强化数学综合检测试题答案[001].doc_第1页
第1页 / 共19页
人教版初二上学期压轴题强化数学综合检测试题答案[001].doc_第2页
第2页 / 共19页
人教版初二上学期压轴题强化数学综合检测试题答案[001].doc_第3页
第3页 / 共19页
人教版初二上学期压轴题强化数学综合检测试题答案[001].doc_第4页
第4页 / 共19页
人教版初二上学期压轴题强化数学综合检测试题答案[001].doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、人教版初二上学期压轴题强化数学综合检测试题答案1如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式(1)_;(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断APN的形状并说明理由;(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG试说明,CG与FG的数量关系2如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:3(1)模型:如图1,

2、在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:4如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论5以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由6如图,是等边三角形,点在上,点在的延长线上,且(1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论(3)如图丙,若点在线段的延长线

3、上,试判断与的大小关系,并说明理由7已知在四边形ABCD中,ABC+ADC=180,AB=BC(1)如图1,若BAD=90,AD=2,求CD的长度;(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:PBQ=90ADC;(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出PBQ与ADC的数量关系,并给出证明过程.8在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称(1)如图1,OA=OB,AF平分BAC交BC于F,BEAF交A

4、C于E,请直接写出EF与EC的数量关系为 ;(2)如图2,AF平分BAC交BC于F,若AF=2OB,求ABC的度数;(3)如图3,OA=OB,点G在BO的垂直平分线上,作GOH=45交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系【参考答案】2(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;解析:(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等

5、量代换即可得到结论;(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论(1) 解得 (2) 是等腰三角形,理由如下:由点A(a,0)、点B(b,0)为x轴上两点,且可得,OA=OB OC垂直平分AB , 是等腰三角形(3),理由如下:如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角

6、的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键3(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE

7、,OT=AG,由“SAS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:(1)a2-2ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点C作CQPQ,交PQ于点Q,四边形AOBP是矩形,AO=BP=6,AP=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPB

8、CQ(SAS),AB=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+ADO=OAD+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE,OT=AG,BAC=45,TAD=EAD=45,又AD=AD,TADEAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,E

9、F=ED=TD=OT+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键4(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而可求出,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证AD

10、CAEM,故而得出AE为BAM的角平分线,即,即可得出答案;【详解】解:(1)AD平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,ADCAEM(SAS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,故 ,BE:CD=AB:AC;【点睛】本题考

11、查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;5(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结解析:(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如图,作CPAC于点C,延长FD交CP于点P,先证明BAEFCP,可得3=P,AB=CP,然后证明ACDPCD,可得4

12、=P,进一步即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=90,ACD=BAE,在DAC和EBA中,ADC=E,ACD=BAE,AC=AB,(AAS);(2)结合图形可得:;故答案为:;(3)证明:如图,作CPAC于点C,延长FD交CP于点P,AF=CE,AE=CF,1=2,BAE=FCP=90,BAEFCP,3=P,AB=CP,ABC=ACB=45,PCP=90,AB=CP,FCD=45,AC=PC,ACB=PCD,CD=CD,ACDPCD,4=P,3=P,3=4,3+2=90,4+2=90,AGE=90,即【点睛】本题考查了

13、等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键6(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到BFC=180-ACE-CDF=180-

14、DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=AC,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SAS),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=AE,BAC=EAD=90,BAC+CA

15、D=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),BD=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答7(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据BD=DE即可解题;(2)过D作DFBC,交AB于F,解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC

16、的度数,根据BD=DE即可解题;(2)过D作DFBC,交AB于F,证BFDDCE,推出DF=CE,证ADF是等边三角形,推出AD=DF,即可得出答案(3)如图3,过点D作DPBC,交AB的延长线于点P,证明BPDDCE,得到PD=CE,即可得到AD=CE【详解】证明:是等边三角形,为中点,,;(2)成立,如图乙,过作,交于,则是等边三角形,在和中,即如图3,过点作,交的延长线于点,是等边三角形,也是等边三角形,,,在和中,【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形8(1)CD=2;(2)证明见解析;

17、(3)(2)中结论不成立,应该是:,理由见解析.【分析】(1)如图1,利用HL证得两个直角三角形全等:RtBADRtBCD,则其对应边相等:AD=DC=2解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.【分析】(1)如图1,利用HL证得两个直角三角形全等:RtBADRtBCD,则其对应边相等:AD=DC=2;(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证BPABCK(SAS)得到:1=2,BP=BK然后由全等三角形PBQBKQ的对应角相等求得PBQ=ABC,结合已知条件“ABC+ADC=180”可以推知PBQ=90-ADC;(3

18、)(2)中结论不成立,应该是:PBQ=90+ADC如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:BPABCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:PBQBKQ,则其对应角相等:PBQ=KBQ,结合四边形的内角和是360度可以推得:PBQ=90+ADC【详解】(1),在RtBAD和RtBCD中,RtBADRtBCD(HL)AD=DC=2DC=2(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK在BPA和BCK中BPABCK(SAS),BP=BKPQ=AP+CQPQ=QK在PBQ和BKQ中PBQBKQ(SSS) (3)(2)中结论

19、不成立,应该是:在CD延长线上找一点K,使得KC=AP,连接BK在BPA和BCK中BPABCK(SAS),BP=BKPQ=AP+CQPQ=QK在PBQ和BKQ中PBQBKQ(SSS)【点睛】本题考查了全等三角形的判定与性质在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.9(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取解析:(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证

20、明AEF=ABF=90,可得结论;(2)如图2中,取CF的中点T,连接OT由OA=OC,BOAC,推出BA=BC,推出BAC=BCA,ABO=CBO,设BAC=BCA=2,利用三角形内角和定理,构建方程求解即可;(3)结论:OG=GH,OGGH如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW证明GOH=GOH=45,推出点H与点H重合,可得结论(1)解:(1)结论:EF=EC理由:如图1中,设AF交BE于点JAF平分BAC,BAF=CAF,BEAF,BAF+ABE=90,CAF+AEB=90,ABE=AEB,AB=AE,A,C关于y轴对

21、称,OA=OC,OA=OB,OA=OB=OC,OAB=OBA=45,OCB=OBC=45,ABC=90,在ABF和AEF中,ABFAEF(SAS),AEF=ABF=90,CEF=90,ECF=EFC=45,EF=EC;(2)解:如图2中,取CF的中点T,连接OTAO=OC,FT=TC,OTAF,OT=AF,AF=2OB,OB=OT,OBT=OTB,OA=OC,BOAC,BA=BC,BAC=BCA,ABO=CBO,设BAC=BCA=2,AF平分BAC,BAF=CAF=,OTAF,TOC=CAF=,OBT=OTB=TOC+TCO=3,OBC+OCB=90,5=90,=18,OBC=36,ABC=2

22、OBC=72;(3)解:结论:OG=GH,OGGH理由:如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW设OGB=m,OGH=n,GD垂直平分线段OB,GB=GO,DGB=DGO=m,GB=GO=GH,GHO=(180-n)=90-n,GHB=(180-m-n)=90-m-n,KHO=GHO-GHB=90-n-(90-m-n)=m,KHO=KGW,GKW=HKO,HOK=GWK,DGOA,GWK=OAB=45,COH=45,COH=45,COH=COH,点H与点H重合,OG=GH,GHO=GOH=45,OGH=90,GH=GO,GHGO【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服