收藏 分销(赏)

人教版七年级数学下册期末质量检测题附解析.doc

上传人:精*** 文档编号:1920623 上传时间:2024-05-11 格式:DOC 页数:29 大小:644.04KB
下载 相关 举报
人教版七年级数学下册期末质量检测题附解析.doc_第1页
第1页 / 共29页
人教版七年级数学下册期末质量检测题附解析.doc_第2页
第2页 / 共29页
点击查看更多>>
资源描述
人教版七年级数学下册期末质量检测题附解析 一、选择题 1.如图图形中,∠1和∠2不是同位角的是( ) A. B. C. D. 2.下列现象中,(  )是平移 A.“天问”探测器绕火星运动 B.篮球在空中飞行 C.电梯的上下移动 D.将一张纸对折 3.平面直角坐标系中,点在( ) A.x轴的正半轴 B.x轴的负半轴 C.y轴的正半轴 D.y轴的负半轴 4.下列命题中假命题的是( ) A.同旁内角互补,两直线平行 B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直 5.如图,直线、相交于点,.若,则等于( ) A.70° B.110° C.90° D.120° 6.下列说法不正确的是(  ) A.的平方根是± B.﹣9是81的平方根 C.0.4的算术平方根是0.2 D.=﹣3 7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为( ). A.50° B.40°或130° C.50°或130° D.40° 8.如图,在平面直角坐标系中,一动点从原点O出发,按“向上、向右、向下、向下、向右、向上…”的方向依次不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),…那么点A23的坐标是(  ) A.(7,﹣1) B.(8,1) C.(7,1) D.(8,﹣1) 九、填空题 9.计算:的结果为_____. 十、填空题 10.已知点的坐标是,且点关于轴对称的点的坐标是,则__________. 十一、填空题 11.如图中,,,AD、AF分别是的角平分线和高,________. 十二、填空题 12.如图,,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为_____度. 十三、填空题 13.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=___°. 十四、填空题 14.将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是___ 十五、填空题 15.点是第四象限内一点,若点到两坐标轴的距离相等,则点的坐标为__________. 十六、填空题 16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______. 十七、解答题 17.计算: (1)3-(-5)+(-6) (2) 十八、解答题 18.求下列各式中的x值: (1) (2) 十九、解答题 19.学习如何书写规范的证明过程,补充完整,并完成后面问题. 已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,∠A=∠FDE.求证:FD∥AC. 证明:∵DE∥BA(已知) ∴ ∠BFD= ( ) 又 ∵ ∠A=∠FDE ∴ = (等量代换) ∴FD∥CA( ) 模仿上面的证明过程,用另一种方法证明FD∥AC. 二十、解答题 20.已知点A(-2,3),B(4,3),C(-1,-3). (1)在平面直角坐标系中标出点A,B,C的位置; (2)求线段AB的长; (3)求点C到x轴的距离,点C到AB的距离; (4)求三角形ABC的面积; (5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标. 二十一、解答题 21.已知的整数部分为a,小数部分为b. (1)求a,b的值: (2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是   . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 二十四、解答题 24.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出. (1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由; (2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程. (3)若,,,请直接写出此时的度数. 二十五、解答题 25.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 【详解】 解:∵选项B中∠1和∠2是由四条直线组成, ∴∠1和∠2不是同位角. 故选:B. 【点睛】 本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键. 2.C 【分析】 根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移. 【详解】 解:A. “天问”探测器绕火星运动不 解析:C 【分析】 根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移. 【详解】 解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意; B. 篮球在空中飞行不是平移,故此选项不符合题意; C. 电梯的上下移动是平移,故此选项符合题意; D. 将一张纸对折不是平移,故此选项不符合题意 故选:C. 【点睛】 本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别. 3.B 【分析】 根据坐标轴上点的坐标特征对点A(-1,0)进行判断. 【详解】 解:∵点A的纵坐标为0, ∴点A在x轴上, ∵点A的横坐标为-1, ∴点A在x轴负半轴上. 故选:B. 【点睛】 本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点. 4.D 【分析】 根据平行线的判定定理逐项分析即可判断. 【详解】 A. 同旁内角互补,两直线平行,是真命题,不符合题意; B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意; C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意; D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意; 故选D 【点睛】 本题考查了真假命题的判断,掌握相关定理与性质是解题的关键. 5.B 【分析】 先根据平行线的性质得到,然后根据平角的定义解答即可. 【详解】 解:∵, ∴, ∵, ∴. 故选:B. 【点睛】 本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键. 6.C 【分析】 根据立方根与平方根的定义即可求出答案. 【详解】 解:0.4的算术平方根为 ,故C错误, 故选C. 【点睛】 考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型. 7.C 【分析】 如图,分两种情况进行讨论求解即可. 【详解】 解:①如图所示,AC∥BF,AD∥BE, ∴∠A=∠FOD,∠B=∠FOD, ∴∠B=∠A=50°; ②如图所示,AC∥BF,AD∥BE, ∴∠A=∠BOD,∠B+∠BOD=180°, ∴∠B+∠A=180°, ∴∠B=130°, 故选C. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 8.D 【分析】 由题意找到动点每移动六次一个循环的规律,根据此规律即可解答. 【详解】 解:由题意得,动点每移动六次为一个循环, 则移动23次为:, 则A23的横坐标为:, 纵坐标为:, 故A23的坐 解析:D 【分析】 由题意找到动点每移动六次一个循环的规律,根据此规律即可解答. 【详解】 解:由题意得,动点每移动六次为一个循环, 则移动23次为:, 则A23的横坐标为:, 纵坐标为:, 故A23的坐标为, 故选:D. 【点睛】 本题考查了点的坐标-规律探究,根基题意得出动点每移动六次为一个循环是解题的关键. 九、填空题 9.6 【分析】 根据算术平方根的定义即可求解. 【详解】 解:的结果为6. 故答案为6 【点睛】 考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数 解析:6 【分析】 根据算术平方根的定义即可求解. 【详解】 解:的结果为6. 故答案为6 【点睛】 考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数. 十、填空题 10.-3 1 【分析】 平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数. 【详解】 ∵已知点的坐标是,且点关于轴对称的点的坐标是, ∴m=−3;n=1, 故答案为−3;1 解析:-3 1 【分析】 平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数. 【详解】 ∵已知点的坐标是,且点关于轴对称的点的坐标是, ∴m=−3;n=1, 故答案为−3;1. 【点睛】 解决本题的关键是掌握好对称点的坐标规律: (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵A 解析: 【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵AF是的高,∴, 在中,, ∴. 又∵在中,,, ∴, 又∵AD平分, ∴, ∴ . 故答案为:. 【点睛】 本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 十二、填空题 12.【分析】 根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果. 【详解】 ∵AB∥CD, ∴∠CMF=∠ 解析: 【分析】 根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果. 【详解】 ∵AB∥CD, ∴∠CMF=∠1=57°, ∵MF平分∠CME, ∴∠CME=2∠CMF=114°, ∴∠EMD=180°-∠CME=66°, 故答案为:66. 【点睛】 此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键. 十三、填空题 13.115 【分析】 先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论. 【详解】 解:∵∠1+∠2=130°, ∴∠AMN+∠DNM= =115°. ∵∠A+∠ 解析:115 【分析】 先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论. 【详解】 解:∵∠1+∠2=130°, ∴∠AMN+∠DNM= =115°. ∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°, ∴∠B+∠C=∠AMN+∠DNM=115°. 故答案为:115. 【点睛】 本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键. 十四、填空题 14.【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 解析: 【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算. 【详解】 (20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数, ∵,即1,,,中第三个数 :, ∴的相反数为 故答案为. 【点睛】 此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键. 十五、填空题 15.【分析】 根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可. 【详解】 ∵点是第四象限内一点且到两坐标轴距离相等, ∴点M的横坐标与纵坐标互为 解析: 【分析】 根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可. 【详解】 ∵点是第四象限内一点且到两坐标轴距离相等, ∴点M的横坐标与纵坐标互为相反数 ∴ 解得, ∴M点坐标为(4,-4). 故答案为(4,-4) 【点睛】 本题考查了点的坐标,理解点是第四象限内一点且到两坐标轴距离相等,则点M的横坐标与纵坐标互为相反数是解题的关键. 十六、填空题 16.(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2, 解析:(6,6) 【分析】 根据质点移动的各点的坐标与时间的关系,找出规律即可解答. 【详解】 由题意可知质点移动的速度是1个单位长度╱秒, 到达(1,0)时用了3秒,到达(2,0)时用了4秒, 从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒, 以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒, 故第42秒时质点到达的位置为(6,6), 故答案为:(6,6). 【点睛】 本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键. 十七、解答题 17.(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 解析:(1)2;(2)-1 【分析】 (1)利用加减法法则计算即可得到结果; (2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果. 【详解】 (1)解:3-(-5)+(-6) =3+5-6 =2 (2)解:(-1)2- =1-4× =1-2 =-1 【点睛】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 十八、解答题 18.(1)x=-15;(2)x=8或x=-4 【分析】 (1)利用直接开立方法求得x的值; (3)利用直接开平方法求得x的值. 【详解】 解:(1), ∴, ∴, 解得:x=-15; (2), ∴, ∴ 解析:(1)x=-15;(2)x=8或x=-4 【分析】 (1)利用直接开立方法求得x的值; (3)利用直接开平方法求得x的值. 【详解】 解:(1), ∴, ∴, 解得:x=-15; (2), ∴, ∴, 解得:x=8或x=-4. 【点睛】 本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根. 十九、解答题 19.(1)∠FDE,两直线平行,内错角相等; ∠A,∠BFD, 同位角相等,两直线平行;(2)证明见解析. 【分析】 (1)根据两直线平行内错角相等和同位角相等两直线平行求解即可; (2)根据两直线平行 解析:(1)∠FDE,两直线平行,内错角相等; ∠A,∠BFD, 同位角相等,两直线平行;(2)证明见解析. 【分析】 (1)根据两直线平行内错角相等和同位角相等两直线平行求解即可; (2)根据两直线平行同位角相等和内错角相等两直线平行求解即可 【详解】 (1)证明:∵DE∥BA(已知) ∴ ∠BFD=∠FDE(两直线平行,内错角相等) 又 ∵ ∠A=∠FDE ∴∠A=∠BFD,(等量代换) ∴FD∥CA(同位角相等,两直线平行.) 故答案为:∠FDE,两直线平行,内错角相等; ∠A,∠BFD, 同位角相等,两直线平行. (2)证明:∵DE∥BA(已知), ∴∠A=∠DEC(两直线平行,同位角相等), 又 ∵ ∠A=∠FDE(已知), ∴∠FDE=∠DEC(等量代换), ∴FD∥CA;(内错角相等,两直线平行). 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根 解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3) 【分析】 (1)根据三个点的坐标,在坐标系中标出来对应的位置即可; (2)根据两点坐标求出两点的距离即可; (3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解; (4)根据三角形面积=AB的长×C到直线AB的距离求解即可; (5)根据同底等高的两个三角形面积相等即可求解. 【详解】 解:(1)如图所示,即为所求; (2)∵A(-2,3),B(4,3), ∴AB=4-(-2)=6; (3)∵C(-1,-3), ∴C到x轴的距离为3,到直线AB的距离为6; (4)∵AB=6,C到直线AB的距离为6, ∴; (5)如图所示,三角形ABP与三角形ABC同底等高,即为所求 ∴P(0,-3); 同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9); ∴P(0,-3)或(0,9). 【点睛】 本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本 解析:(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 二十四、解答题 24.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C 解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120° 【分析】 (1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED; (2)根据题意作AB∥CD,即可∠B=∠C=35°; (3)分别画图,根据平行线的性质计算出∠B的度数. 【详解】 解:(1)AB平行于ED,理由如下: 如图2,过点C作CF∥AB, ∴∠BCF=∠B=50°, ∵∠BCD=85°, ∴∠FCD=85°-50°=35°, ∵∠D=35°, ∴∠FCD=∠D, ∴CF∥ED, ∵CF∥AB, ∴AB∥ED; (2)如图,即为所求作的图形. ∵AB∥CD, ∴∠ABC=∠C=35°, ∴∠B的度数为:35°; ∵A′B∥CD, ∴∠ABC+∠C=180°, ∴∠B的度数为:145°; ∴∠B的度数为:35°或145°; (3)如图2,过点C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∴∠B=∠BCF=50°. 答:∠B的度数为50°. 如图5,过C作CF∥AB,则AB∥CF∥CD, ∴∠FCD=∠D=35°, ∵∠BCD=85°, ∴∠BCF=85°-35°=50°, ∵AB∥CF, ∴∠B+∠BCF=180°, ∴∠B=130°; 如图6,∵∠C=85°,∠D=35°, ∴∠CFD=180°-85°-35°=60°, ∵AB∥DE, ∴∠B=∠CFD=60°, 如图7,同理得:∠B=35°+85°=120°, 综上所述,∠B的度数为50°或130°或60°或120°. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用. 二十五、解答题 25.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】 试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再 解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】 试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论; (2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论; (3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC. 试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE. ∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD; (2)∠BAE+∠MCD=90°.证明如下: 过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE. ∵∠E=90°,∴∠BAE+∠ECD=90°. ∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°; (3)①∠BAC=∠PQC+∠QPC.理由如下: 如图3:∵AB∥CD,∴∠BAC+∠ACD=180°. ∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC; ②∠PQC+∠QPC+∠BAC=180°.理由如下: 如图4:∵AB∥CD,∴∠BAC=∠ACQ. ∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°. 点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服