1、八年级期末试卷模拟练习卷(Word版含解析)一、选择题1若代数式有意义,则实数的取值范围是( )ABCD2以下列各组线段为边作三角形,不能作出直角三角形的是( )A1,2,B6,8,10C3,7,8D0.3,0.4,0.53如图,四边形ABCD的对角线AC、BD相交于O,下列判断正确的是( )A若ACBD,则四边形ABCD是菱形B若ACBD,则四边形ABCD是矩形C若AB=DC,ADBC,则四边形ABCD是平行四边形D若AO=OC,BO=OD,则四边形ABCD是平行四边形4一年级(1)班部分同学背诵课文人之初的时间(单位:s)26,42,30,40,29,29,27,29,28,30,设平均数
2、为P,众数为Z,中位数为W,则( )AP= ZBP=WCZ=WDP= Z=W5图,在四边形中,且,则四边形的面积为( )ABCD6如图,在平面直角坐标系上,直线yx3分别与x轴、y轴相交于A、B两点,将AOB沿x轴翻折得到AOC,使点B刚好落在y轴正半轴的点C处,过点C作CDAB交AB于D,则CD的长为()ABC4D57如图,菱形ABCD的边长为2,且DAB60,E是BC的中点,P为BD上一点且PCE的周长最小,则PCE的周长的最小值为()ABCD8如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(8,4),若直线经过点D(2,0),且将平行四边形OABC分割成面积相等的两部
3、分,则直线DE的表达式是( )Ay=x-2By=2x-4Cy=x-1Dy=3x-6二、填空题9使代数式有意义的x的取值范围是_10如图,菱形的对角线,相交于点,已知,菱形的面积为24,则的长为_11如图,矩形ABCD的对角线AC与BD相交于点O,AOD60,AD4,则AB_12如图,将矩形折叠,使点和点重合,折痕为,与交于点若,则的长为_13在平面直角坐标系中,直线与直线交于点,则_14如图,矩形ABCD中,对角线AC和BD交于点O,过O的直线分别交AD和BC于点E、F,已知AD=4 cm,图中阴影部分的面积总和为6 cm 2,则矩形的对角线AC长为_cm.15如图,在平面直角坐标系中,函数y
4、2x和yx的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交ll于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,依次进行下去则点A4的坐标为_;点的坐标为_;点A2021的坐标为_16在矩形ABCD中,将沿对角线BD对折得到,DE与BC交于F,则EF等于_三、解答题17计算题(1);(2)18如图,将长为2.5米的梯子AB斜靠在墙AO上,BO长0.7米如果将梯子的顶端A沿墙下滑0.4米,即AM等于0.4米,则梯脚B外移(即BN长)多少米?19如图,410长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点
5、A,B,E,F都在格点上,按下列要求作图,使得所画图形的顶点均在格点上(1)在图中画出以AB为边的正方形ABCD;(2)在图中画出以EF为边的等腰三角形EFG,且EFG的周长为;(3)在(1)(2)的条件下,连接CG,则线段CG的长为 20如图,已知平分,(1)求证:;(2)若点在上,且,求证:四边形是菱形21我们规定,若ab2,则称a与b是关于1的平衡数(1)若3与是关于1的平衡数,5与是关于1的平衡数,求,的值;(2)若(m)(1)2n3(1),判断m与5n是否是关于1的平衡数,并说明理由22某公司分别在A,B两城生产同种产品,共100件A生产的产品总成本y(万元)与产品数量x(件)之间具
6、有函数关系ykx+b当x10时,y130;当x20时,y230B城生产的产品每件成本为60万元,若B城生产的产品数量至少比A城生产的产品数量多40件(1)求k,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示)23如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为D
7、E,DC,BC的中点(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;(2)探究证明:把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸:把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值24如图1,平面直角坐标系中,直线交轴于点,交轴正半轴于点(1)求点的坐标;(2)如图2,直线交轴负半轴于点,且,为线段上一点,过点作轴的平行线交直线于点,设点的横坐标为,线段的长为,求与之间的函数关系式;(3)在(2)的条件下,为延长线上一点,且,在线段上是否存在点,使是以为斜边的等腰直角三角形,若存在
8、,请求出点的坐标;若不存在,请说明理由25如图,在矩形 ABCD中, AB=16 , BC=18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把EBF沿 EF 折叠,点B落在点 B 处.(I)若 AE=0 时,且点 B 恰好落在 AD 边上,请直接写出 DB 的长;(II)若 AE=3 时, 且CDB 是以 DB 为腰的等腰三角形,试求 DB 的长;(III)若AE=8时,且点 B 落在矩形内部(不含边长),试直接写出 DB 的取值范围. 【参考答案】一、选择题1B解析:B【分析】根据二次根式有意义的条件即可求的的取值范围【详解】代数式有意义,解得故选B【点睛
9、】本题考查了二次根式有意义的条件,掌握二次分式有意义的条件是解题的关键2C解析:C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可【详解】解:A、,以1,2,为边的三角形是直角三角形,故本选项不符合题意;B、62+82=36+64=100=102,以6,8,10为边的三角形是直角三角形,故本选项不符合题意;C、32+72=9+49=5882,以3,7,8为边的三角形不是直角三角形,故本选项符合题意;D、0.32+0.42=0.09+0,16=0.25=0.52,以0.3,0.4,0.5为边的三角形是直角三角形,故本选项不符合题意;故选:C【点评】本题考查了勾股定理的逆定理,能
10、熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形3D解析:D【解析】【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可【详解】解:A:对角线相互垂直平行四边形才是菱形,四边形ABCD不一定是平行四边形,故选项错误,不符合题意;B:对角线相等的平行四边形才是矩形,四边形ABCD不一定是平行四边形,故选项错误,不符合题意;C:一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D:对角线互相平分的四边形是平行四边形,故选项正确,符合题意;
11、故选D【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键4C解析:C【解析】【分析】分别求出这组数据的平均数,中位数,众数进行判断即可【详解】解:由题意得:平均数把这组数据重新排列如下:26,27,28,29,29,29,30,30,40,42,处在最中间的两个数为29、29,中位数,29出现了3次,出现的次数最多,众数,故选C【点睛】本题主要考查了求中位数,众数和平均数,解题的关键在于能够熟练掌握三者的定义5B解析:B【分析】连接AC,在直角三角形ABC中,利用勾股定理求出AC的长,在三角形ACD中,利用勾股定理的逆定理判断得到三角形ACD为直角
12、三角形,两直角三角形面积之和即为四边形ABCD的面积【详解】解:连接AC,如图,在RtABC中,AB=1,BC=1,根据勾股定理得:,在ACD中,CD=2,AC2+CD2=AD2,ACD为直角三角形,则四边形ABCD的面积故选:B【点睛】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理是解本题的关键6B解析:B【解析】【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,在RtAOB中,利用勾股定理可求出AB的长,由折叠的性质可得出OCOB,进而可得出BC的长,再利用面积法,即可求出CD的长【详解】解:当x0时,y033,点B的坐标为(0,3);当y0时,x30,解得:x4,点
13、A的坐标为(4,0)在RtAOB中,AOB90,OA4,OB3,由折叠可知:OCOB3,BCOB+OC6SABCBCOAABCD,故选B【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7B解析:B【解析】【分析】由菱形的性质可得点A与点C关于BD对称,则PCE的周长PCPECEAECE,此时PCE的周长最小,过点E作EGAB交AB延长线于点G,由BAD60,可求EBG60,则BG,EG,在RtAEG中,求出AE,则PCE的周长AECE1,即为所求【详解】解:菱形ABCD,点A与点C关于BD对称,连接AE交
14、BD于点P,连接PC,则PEPCPAPCAE,PCE的周长PCPECEAECE,此时PCE的周长最小,E是BC的中点,菱形ABCD的边长为2,BE1,AB2,过点E作EGAB交AB延长线于点G,BAD60,ABC120,EBG60,BG,EG,在RtAEG中,AE2AG2EG2,AE,PCE的周长AECE1,PCE的周长的最小值为1,故选:B【点睛】本题考查轴对称求最短距离,熟练掌握菱形的性质,将所求问题转化为求AE的长是解题的关键8A解析:A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可【详解】解
15、:点B的坐标为(8,4),平行四边形的对称中心坐标为(4,2),设直线DE的函数解析式为y=kx+b,则,解得,直线DE的解析式为y=x-2故选:A【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键二、填空题9x-3【解析】【分析】先根据分式分母不为零,再根据二次根式被开方数不为零得出不等式计算即可【详解】解:有题意可知: 则x+30x-3故答案为:x-3【点睛】本题考查分式有意义的条件,二次根式有意义的条件是一道复合型的题目,要考虑前面是重点10A解析:6【解析】【分析】根据菱形的性质得到AC=8,根据
16、菱形的面积等于两条对角线乘积的一半,即可求解【详解】解:四边形ABCD为菱形;AC=2OA=8,,BD=6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种11B解析:【解析】【分析】由矩形对角线的性质得到,结合题意证明是等边三角形,解得BD的长,在中,理由勾股定理解题即可【详解】解:矩形ABCD中,AC=BD且AO=OC,BO=DO是等腰三角形AOD60是等边三角形AD4中故答案为:【点睛】本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键12B解析:【分析】首
17、先根据矩形的性质得出,然后根据平行线的性质及等量代换得出,则,然后根据折叠的性质得出,进而求出BC,然后利用勾股定理求出AB,AC,从而答案可求【详解】四边形是矩形,由折叠得,由折叠得,在中,在中,故答案为:【点睛】本题主要考查矩形的性质,折叠的性质和勾股定理,掌握折叠和矩形的性质及勾股定理是关键13A解析:【分析】利用y=x-3即可求得m的值,然后再把该点代入y=kx-1中可得k的值【详解】解:把(4,m)代入y=x-3得:m=1,A(4,1),把(4,1)代入y=kx-1得1=4k-1,解得k=,故答案为【点睛】本题考查了两直线相交问题,首先会利用代入法求点的坐标,然后再根据待定系数法求k
18、14A解析:5【解析】阴影部分的面积总和为6 cm 2,矩形面积为12 cm 2;ABAD=12,AB=124=3cm. 15(4,4) (8,8) (21010,21011) 【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出解析:(4,4) (8,8) (21010,21011) 【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2)
19、,A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=14+2;2021=5054+1即可找出点A2021的坐标【详解】解:观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8), “A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,6=14+2,A6(8,8)2021=5054+1, A2021的坐标为(21010,21011) 故答案为:(4,4); (8,8);(21010,21011)【点睛】本题考
20、查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”16【分析】根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值【详解】解:由折叠可知:AB=BE=CD=3,解析:【分析】根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值【详解】解:由折叠
21、可知:AB=BE=CD=3,E=A=90,DE=AD=4,ADB=EDB,四边形ABCD是矩形,ADBC,ADB=CBD,CBD=EDB,BF=DF,设BF=DF=x,则CF=4-x,在CDF中,即,解得:x=,即DF=,EF=DE-DF=,故答案为:【点睛】本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程三、解答题17(1);(2)【分析】(1)先化成最简二次根式,最后合并同类二次根式即可;(2)按照二次根式乘除法运算即可【详解】(1)=;(2)=【点睛】本题考查了二次根式的化简,解析:(1);(2)【分析】(1)先化成
22、最简二次根式,最后合并同类二次根式即可;(2)按照二次根式乘除法运算即可【详解】(1)=;(2)=【点睛】本题考查了二次根式的化简,合并同类二次根式,二次根式的乘除法,熟练掌握性质,灵活进行化简计算是解题的关键18梯脚外移0.8米【分析】直角利用勾股定理求出AO,ON的长,再利用NB=ON-OB,即可求出答案【详解】解:由题意得:AB=2.5米,BO=0.7米,在RtABO中,由勾股定理得:解析:梯脚外移0.8米【分析】直角利用勾股定理求出AO,ON的长,再利用NB=ON-OB,即可求出答案【详解】解:由题意得:AB=2.5米,BO=0.7米,在RtABO中,由勾股定理得:(米)MO=AO-A
23、M=2.4-0.4=2(米),在RtMNO中,由勾股定理得:(米)NB=ON-OB=1.5-0.7=0.8(米),梯脚B外移(即BN长)0.8米【点睛】本题主要考查了勾股定理的应用,读懂题意,正确应用勾股定理是解题的关键19(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且EFG的周长为等腰三角形即可;(3
24、)由勾股定理求出CG即可【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作EFG即为以EF为边的等腰三角形EFG,且EFG的周长为;(3)如图,CG【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形20(1)见解析;(2)见解析【分析】(1)证明,由全等三角形的性质得出;(2)同理(1)可得,结合已知,可得菱形的判定定理:四边相等的四边形是菱形可得出结论【详解】证明:(1)平分,解析:(1)见解析;(2)见解析【分析】(1)证明,由全等三角形的性质得出;(2)同理(1)可得,结合已知,可得菱形的判定定理:四
25、边相等的四边形是菱形可得出结论【详解】证明:(1)平分,在和中,;(2)同理(1)可得,四边形是菱形【点睛】本题考查了菱形的判定,全等三角形的判定与性质,能熟记菱形的性质和判定定理是解此题的关键21(1) 1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到的关系,再对解析:(1) 1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到的关系,再对进行分情况讨论求解即
26、可【详解】解:(1)根据题意可得:,解得,故答案为,(2), , , 当均为有理数时,则有 ,解得:,当时,所以不是关于1的平衡数当中一个为有理数,另一个为无理数时,而此时为无理数,故,所以不是关于1的平衡数 当均为无理数时,当时,联立,解得,存在,使得是关于1的平衡数,当且时,不是关于1的平衡数综上可得:当,时,是关于1的平衡数,否则不是关于1的平衡数【点睛】本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想22(1)k的值为10,b的值为30;(2)A城生产了30件产品,B城生产了70件产品;(3)当0m2时,A,B两城总运费的和为(
27、30m+80)万元;当m2时,A,B两城总运费的和为(20m+10解析:(1)k的值为10,b的值为30;(2)A城生产了30件产品,B城生产了70件产品;(3)当0m2时,A,B两城总运费的和为(30m+80)万元;当m2时,A,B两城总运费的和为(20m+100)万元【分析】(1)由题意用待定系数法求k,b的值即可;(2)设A,B两城生产这批产品的总成本的和为W万元,根据题意列出函数关系式,然后由函数的性质求费用最小时x的值;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为件,从B城运往C地的产品数量为件,从B城运往D地的产品数量为件,从而可得
28、关于n的不等式组,解得n的范围,然后根据运费信息可得P关于n的一次函数,最后根据一次函数的性质可得答案【详解】解:(1)由题意,得:,解得:;(2)设A,B两城生产这批产品的总成本的和为W万元,则,由B城生产的产品数量至少比A城生产的产品数量多40件,得:100xx+40,解得:x30,500,W随x的增大而减小,当x30时,W最小,即A,B两城生产这批产品的总成本的和为最少,A城生产了30件产品,B城生产了1003070件产品,答:当A,B两城生产这批产品的总成本的和最少时,A城生产了30件产品,B城生产了70件产品;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城
29、运往D地的产品数量为件,从B城运往C地的产品数量为件,从B城运往D地的产品数量为件,由题意得:,解得:20n30,整理得:,根据一次函数的性质分以下两种情况:当,时,P随n的增大而减小,则n30时,P取最小值,最小值为;当,时,P随n的增大而增大,则时,P取最小值,最小值为答:当时,A,B两城总运费的和为万元;当时,A,B两城总运费的和为万元【点睛】本题考查了待定系数法求一次函数的解析式及一次函数在实际问题中的应用,理清题中的数量关系并明确一次函数的相关性质是解题的关键.23(1)PMPN,PMPN;(2)PMN是等腰直角三角形理由见解析;(3)SPMN最大【分析】(1)由已知易得,利用三角形
30、的中位线得出,即可得出数量关系,再利用三角形的中位线得出得解析:(1)PMPN,PMPN;(2)PMN是等腰直角三角形理由见解析;(3)SPMN最大【分析】(1)由已知易得,利用三角形的中位线得出,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;(2)先判断出,得出,同(1)的方法得出,即可得出,同(1)的方法由,即可得出结论;(3)方法1:先判断出最大时,的面积最大,进而求出,即可得出最大,最后用面积公式即可得出结论方法2:先判断出最大时,的面积最大,而最大是,即可得出结论【详解】解:(1)点,是,的中点,点,是,的中点,故答案为:,;(2)是等腰直角三角形由旋转
31、知,利用三角形的中位线得,是等腰三角形,同(1)的方法得,同(1)的方法得,是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,最大时,的面积最大,且在顶点上面,最大,连接,在中,在中,方法2:由(2)知,是等腰直角三角形,最大时,面积最大,点在的延长线上,【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大24(1);(2);(3)存在,【解析】【分析】(1)由于交轴于点,解方程于是得到结论;
32、(2)根据勾股定理得到,得点,设直线解析式为,解解析式为,在直线上,设,即可得到结论;(3)过作于,由解析:(1);(2);(3)存在,【解析】【分析】(1)由于交轴于点,解方程于是得到结论;(2)根据勾股定理得到,得点,设直线解析式为,解解析式为,在直线上,设,即可得到结论;(3)过作于,由全等三角形的性质得,过点作于,过点作推出四边形是矩形,可设,根据全等三角形的性质得到,得根据在直上,根据勾股定理即可得到结论【详解】(1)交轴于点,直线解析式为,令,(2),点,设直线解析式为,直线解析式为,在直线上,可设点,轴,且点在上,(3)过点作于,轴,过点作于,过点作于点,四边形是矩形,可设,是以
33、为斜边的等腰直角三角形,即,在直线上,【点睛】本题考查了待定系数法求函数的解析式,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键25(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况: 或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I解析:(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况: 或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I) ; (II)四边形是矩形,.分两种情况讨论:(i)如图1,当时,即是以为腰的等腰三角形.(ii)如图2,当时,过点作,分别交与于点、.四边形是矩形,.又,四边形是平行四边形,又,是矩形,即,又,在中,由勾股定理得:,在中,由勾股定理得:,综上,的长为16或10. (III) . (或).【点睛】本题主要考查了四边形的动点问题.