资源描述
人教版中学七7年级下册数学期末复习卷
一、选择题
1.在下列图形中,与是内错角的是( )
A. B. C. D.
2.下列现象属于平移的是()
A.投篮时的篮球运动 B.随风飘动的树叶在空中的运动
C.刹车时汽车在地面上的滑动 D.冷水加热过程中小气泡变成大气泡
3.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列说法中不正确的个数为( ).
①在同一平面内,两条直线的位置关系只有两种:相交和垂直.
②有且只有一条直线垂直于已知直线.
③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
⑤过一点,有且只有一条直线与已知直线平行.
A.2个 B.3个 C.4个 D.5个
5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( )
A. B. C. D.
6.下列说法正确的是( )
A.是分数 B.互为相反数的数的立方根也互为相反数
C.的系数是 D.的平方根是
7.在同一平面内,若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠A的度数为( )
A.20° B.55° C.20°或125° D.20°或55°
8.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点……,第次移动到点,则点的坐标是( )
A. B. C. D.
九、填空题
9.若|y+6|+(x﹣2)2=0,则y x=_____.
十、填空题
10.点A(2,4)关于x轴对称的点的坐标是_____.
十一、填空题
11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号)
十二、填空题
12.已知a∥b,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.
十三、填空题
13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________.
十四、填空题
14.按一定规律排列的一列数依次为:,,,,,,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是__________.
十五、填空题
15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__.
十六、填空题
16.如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为__________.
十七、解答题
17.(1)计算:
(2)比较 与-3的大小
十八、解答题
18.求下列各式中的值:
(1);
(2).
十九、解答题
19.补全下列推理过程:
如图,已知EF//AD,∠1=∠2,∠BAC=70°,求∠AGD.
解:∵EF//AD
∴∠2= ( )
又∵∠1=∠2( )
∴∠1=∠3( )
∴AB// ( )
∴∠BAC+ =180°( )
∵∠BAC=70°
∴∠AGD= .
二十、解答题
20.在平面坐标系中描出下列各点且标该点字母:
(1)点,,,;
(2)点在轴上,位于原点右侧,距离原点2个单位长度;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度.
二十一、解答题
21.阅读下面文字:
我们知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上小明的表示法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:<<,即,∴的整数部分是2,小数部分是.
(1)的整数部分是________,小数部分是________;
(2)如果的小数部分是a,整数部分是b,求的值;
(3)已知,其中x是整数,且,求.
二十二、解答题
22.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上.
(1)求正方形的面积和边长;
(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.
二十三、解答题
23.已知,点为平面内一点,于.
(1)如图1,求证:;
(2)如图2,过点作的延长线于点,求证:;
(3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数.
二十四、解答题
24.如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足.
(1)点的坐标为______;点的坐标为______.
(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束.的中点的坐标是,设运动时间为.问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由.
(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.
二十五、解答题
25.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.
解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .
拓展延伸:
(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 .
(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角定义进行解答即可.
【详解】
解:A、∠1与∠2是同位角,故此选项不合题意;
B、∠1与∠2是同旁内角,故此选项不合题意;
C、∠1与∠2是内错角,故此选项符合题意;
D、∠1与∠2不是内错角,此选项不合题意;
故选:C.
【点睛】
此题主要考查了内错角,关键是掌握内错角的边构成“Z“形.
2.C
【分析】
判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.
【详解】
解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;
B
解析:C
【分析】
判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.
【详解】
解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;
B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;
C. 刹车时汽车在地面上的滑动,此选项是平移现象;
D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.
故选:C.
【点睛】
本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.
3.A
【分析】
根据点的横纵坐标的正负判断即可.
【详解】
解:因为a2+1≥1,
所以点(a2+1,2020)所在象限是第一象限.
故选:A.
【点睛】
本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.
4.C
【分析】
根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.
【详解】
∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;
∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;
从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;
过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;
∴不正确的有①②④⑤四个.
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.
5.D
【分析】
由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.
【详解】
解:由题意得:AG∥BE∥CD,CF∥BD,
∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°
∴∠CFB=∠CDB
∴∠CAG=∠CDB
由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°
∴∠CAG=∠CDB=∠1+∠BAG=2α
∴∠2=180°-2∠BDC=180°-4α
故选D.
【点睛】
本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.
6.B
【分析】
根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.
【详解】
∵是无理数,
∴A错误,
∵互为相反数的数的立方根也互为相反数,
∴B正确,
∵的系数是,
∴C错误,
∵的平方根是±8,
∴D错误,
故选B.
【点睛】
本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.
7.C
【分析】
根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数.
【详解】
解:∵两个角的两边分别平行,
∴这两个角大小相等或互补,
①这两个角大小相等,如下图所示:
由题意得,∠A=∠B,∠A=3∠B-40°,
∴∠A=∠B=20°,
②这两个角互补,如下图所示:
由题意得,,,
∴,,
综上所述,∠A的度数为20°或125°,
故选:C.
【点睛】
本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.
8.B
【分析】
根据题意可得 ,,,,,, ,
由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解.
【详解】
解:由题意得:
,,,,
解析:B
【分析】
根据题意可得 ,,,,,, ,
由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解.
【详解】
解:由题意得:
,,,,,, ,
由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,
∵ ,
∴点的纵坐标为1,
∵,,,,由此得:,
∴.
故选:B
【点睛】
本题主要考查了平面直角坐标系中点的坐标规律题——坐标与旋转,解题的关键是理解题意找出规律解答问题.
九、填空题
9.36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
解析:36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
十、填空题
10.(2,﹣4)
【分析】
根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.
【详解】
点A(2,4)关于x轴对称的点的坐标是(2,﹣4),
故答案为(2,﹣4).
【点睛
解析:(2,﹣4)
【分析】
根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.
【详解】
点A(2,4)关于x轴对称的点的坐标是(2,﹣4),
故答案为(2,﹣4).
【点睛】
此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.
十一、填空题
11.①②④
【分析】
根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可
【详解】
解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,
∴∠1=∠2,A=AC,DC
解析:①②④
【分析】
根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可
【详解】
解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,
∴∠1=∠2,A=AC,DC=D,
∴AD垂直平分C′C;
∴①,②都正确;
∵B=D, DC=D,
∴B=D= DC,
∴∠3=∠B,∠4=∠5,
∴∠3=∠4+∠5=2∠5即∠B=2∠BC;
∴③错误;
根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3,
∵∠ACB的角平分线交AD于点E,
∴2(∠6+∠5)=2∠B,
∴
∴D ∥EC
∴④正确;
故答案为:①②④.
【点睛】
本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.
十二、填空题
12.60°
【分析】
如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.
【详解】
解:如图,∵∠1=30°,
∴∠3=∠1=30°,
∵a∥b
解析:60°
【分析】
如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.
【详解】
解:如图,∵∠1=30°,
∴∠3=∠1=30°,
∵a∥b,
∴∠4=∠3=30°,
∴∠5=180°-∠4-90°=60°,
∴∠2=∠5=60°.
故答案为:60°.
【点睛】
本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.
十三、填空题
13.120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而
解析:120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
【详解】
解:Rt△ABE中,∠ABE=30°,
∴∠AEB=60°;
由折叠的性质知:∠BEF=∠DEF;
而∠BED=180°-∠AEB=120°,
∴∠BEF=60°;
由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°,
∴BE∥C′F,
∴∠EFC′=180°-∠BEF=120°.
故答案为:120.
【点睛】
本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
十四、填空题
14.;
【详解】
观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,
又因为,,,,,所以第n个数的绝对值是,
所以第个数是,第n个数是,故答案为-82,.
点睛:本题主要考查了有理数的混合运
解析:;
【详解】
观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,
又因为,,,,,所以第n个数的绝对值是,
所以第个数是,第n个数是,故答案为-82,.
点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.
十五、填空题
15.(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a
解析:(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a+2-3a=12,
解得a=-2,
∴2a=-4,2-3a=8,
∴点P的坐标为(-4,8).
故答案为:(-4,8).
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;
【详解】
,
,
,
,
,
故答案为:
【点睛】
本题考查了坐标系中点的规律,找到规律是解题的关键.
解析:
【分析】
观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;
【详解】
,
,
,
,
,
故答案为:
【点睛】
本题考查了坐标系中点的规律,找到规律是解题的关键.
十七、解答题
17.(1)-1;(2)
【分析】
(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;
(2)求出-3= ,即可得出结果.
【详解】
解:(1)原式=
=
=-1;
(2)∵
∴
即
解析:(1)-1;(2)
【分析】
(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;
(2)求出-3= ,即可得出结果.
【详解】
解:(1)原式=
=
=-1;
(2)∵
∴
即.
故答案为(1)-1;(2).
【点睛】
本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)直接根据求平方根的方法解方程即可;
(2)直接根据求立方根的方法解方程即可.
【详解】
解:(1)∵,
∴,
∴,
∴或;
(2)∵,
∴,
∴.
【点睛】
本题主
解析:(1)或;(2)
【分析】
(1)直接根据求平方根的方法解方程即可;
(2)直接根据求立方根的方法解方程即可.
【详解】
解:(1)∵,
∴,
∴,
∴或;
(2)∵,
∴,
∴.
【点睛】
本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.
十九、解答题
19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°
【分析】
根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得
解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°
【分析】
根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD.
【详解】
解:∵EF//AD,
∴∠2=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代换),
∴AB//DG,(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)
∵∠BAC=70°,
∴∠AGD=110°
故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°.
【点睛】
本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.
二十、解答题
20.(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后
解析:(1)见解析;(2)见解析;(3)见解析
【分析】
(1)直接在平面直角坐标系内描出各点即可;
(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;
(3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可.
【详解】
解:(1)如图 ,
(2)∵点在轴上,位于原点右侧,距离原点2个单位长度,
∴点 ;
(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,
∴点 .
【点睛】
本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.
二十一、解答题
21.(1)3,;(2);(3)
【分析】
(1)先估算出的范围,再求出即可;
(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;
(3)先求出10+的范围,再求出x、y的值,最后代入求出
解析:(1)3,;(2);(3)
【分析】
(1)先估算出的范围,再求出即可;
(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;
(3)先求出10+的范围,再求出x、y的值,最后代入求出即可.
【详解】
解:(1)∵<<,
∴3<<4,
∴的整数部分是3,小数部分是-3,
故答案为:3,-3;
(2)∵<<,<<,
∴2<<3,6<<7,
∴a=-2,b=6,
∴;
(3)∵1<<2,
∴11<<12,
∴x=11,y=,
∴.
【点睛】
本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键.
二十二、解答题
22.(1)面积为29,边长为;(2),,,,图见解析.
【分析】
(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;
(2)建立适当的坐标系后写出四个顶点的坐标
解析:(1)面积为29,边长为;(2),,,,图见解析.
【分析】
(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;
(2)建立适当的坐标系后写出四个顶点的坐标即可.
【详解】
解:(1)正方形的面积,
正方形边长为;
(2)建立如图平面直角坐标系,
则,,,.
【点睛】
本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.
二十三、解答题
23.(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3
解析:(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答.
【详解】
(1)证明:∵,
∴,
∵于,
∴,
∴,
∴;
(2)证明:过作,
∵,
∴,
又∵,
∴,
∴,
∵,
∴,
∴,
∴;
(3)设∠DBE=a,则∠BFC=3a,
∵BE平分∠ABD,
∴∠ABD=∠C=2a,
又∵AB⊥BC,BF平分∠DBC,
∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°
又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°
∴∠BCF=135°-4a,
∴∠AFC=∠BCF=135°-4a,
又∵AM//CN,
∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,
∴135°-4a+135°-4a+2a=180,解得a=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.
二十四、解答题
24.(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-
解析:(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可;
(3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.
【详解】
解:(1)∵+|b-2|=0,
∴a-2b=0,b-2=0, 解得a=4,b=2,
∴A(0,4),C(2,0).
(2)存在, 理由:如图1中,D(1,2),
由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,
∴0<t≤2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,
∴S△DOP=•OP•yD=(2-t)×2=2-t,S△DOQ=•OQ•xD=×2t×1=t,
∵S△ODP=S△ODQ,
∴2-t=t,
∴t=1.
(3)结论:的值不变,其值为2.理由如下:如图2中,
∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO,
∴∠GOC+∠ACO=180°,
∴OG∥AC,
∴∠1=∠CAO,
∴∠OEC=∠CAO+∠4=∠1+∠4,
如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,
∴∠PHO=∠GOF=∠1+∠2,
∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,
∴=2.
【点睛】
本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.
二十五、解答题
25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)
解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;
(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.
试题解析:解:解决问题
连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.
拓展延伸:
解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.
(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
展开阅读全文